Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Chemphyschem ; 25(13): e202400208, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38594204

RESUMEN

Photoionization and dissociative photoionization of acetaldehyde (CH3CHO) in the 10.0-13.7 eV energy range are studied by using synchrotron radiation double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO). The X2A' and A2A" electronic states of CH3CHO+ as well as the Franck-Condon gap region between these two states have been populated with several vibrational sequences and assigned in the high-resolution slow photoelectron spectrum (SPES). The adiabatic ionization energies (AIEs) of the X2A' and A2A" states are measured at 10.228±0.006 and 12.52±0.05 eV, respectively. The present results show that the X2A' state is a stable state while the A2A" state is fully dissociative to produce CH3CO+, CHO+ and CH4 + fragment ions. The 0 K appearance energies (AE0K) of CH3CO+ and CHO+ fragment ions are determined through the modeling of the breakdown diagram, i. e., AE0K(CH3CO+)=10.89±0.01 eV (including a reverse barrier of ~0.19 eV) and AE0K(CHO+)=11.54±0.05 eV. In addition, the dissociation mechanisms of CH3CHO+ including statistical dissociation, direct bond breaking and isomerization are discussed with the support of the calculated dissociation limits and transition state energies.

2.
Chemphyschem ; : e202400328, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804589

RESUMEN

The valence band electronic structure of isolated silver iodide nanoparticles (AgI NP) was investigated by vacuum-ultraviolet aerosol photoelectron spectroscopy using the velocity map imaging technique (VUV VMI-PES). The VUV VMI-PES results were obtained for polydisperse aerosol produced by aggregation of hydrocolloid of silver iodide particles 8-15 nm in size. The ionization energy of the AgI particles was found to be 6.0±0.1 eV with respect to the vacuum level. The DFT calculations showed that the main contribution to the density of AgI electronic states in the valence region originates from I 5p orbitals. The dependence of the asymmetry parameter on the electron energy showed that the value of the characteristic energy loss of excited photoelectrons was 2.7 eV, which coincided with the band gap of the nanomaterial.

3.
Analyst ; 149(5): 1586-1596, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38289286

RESUMEN

The signal levels observed from mass spectrometers coupled by molecular beam sampling to shock tubes are impacted by dynamic pressures in the spectrometer due to rapid pressure changes in the shock tube. Accounting for the impact of the pressure changes is essential if absolute concentrations of species are to be measured. Obtaining such a correction for spectrometers operated with vacuum ultra violet photoionization has been challenging. We present here a new external calibration method which uses VUV-photoionization of CO2 to develop time-dependent corrections to species concentration/time profiles from which kinetic data can be extracted. The experiments were performed with the ICARE-HRRST (high repetition rate shock tube) at the DESIRS beamline of synchrotron SOLEIL. The calibration experiments were performed at temperatures and pressures behind reflected shock waves of 1376 ± 12 K and 6.6 ± 0.1 bar, respectively. Pyrolytic experiments with two aromatic species, toluene (T5 = 1362 ± 22 K, P5 = 6.6 ± 0.2 bar) and ethylbenzene (T5 = 1327 ± 18 K, P5 = 6.7 ± 0.2 bar), are analyzed to test the method. Time dependent concentrations for molecular and radical species were corrected with the new method. The resulting signals were compared with chemical kinetic simulations using a recent mechanism for pyrolytic formation of polycyclic aromatic hydrocarbons. Excellent agreement was obtained between the experimental data and simulations, without adjustment of the model, demonstrating the validity of the external calibration method.

4.
Phys Chem Chem Phys ; 26(24): 17042-17047, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38836386

RESUMEN

We report the photoelectron spectrum of the pyridyl radical (C5H4N), a species of interest in astrochemistry and combustion. The radicals were produced via hydrogen abstraction in a fluorine discharge and ionized with synchrotron radiation. Mass-selected slow photoelectron spectra of the products were obtained from photoelectron-photoion coincidence spectra. A Franck-Condon simulation based on computed geometries and vibrational frequencies identified contributions of the o- and p-pyridyl radicals. For the o-isomer an adiabatic ionisation energy of 7.70 eV was obtained, in excellent agreement with a computed value of 7.72 eV. The spectrum of o-pyridyl is characterized by a long progression in an in-plane bending mode and the N-C stretch that contains the radical site.

5.
J Phys Chem A ; 128(27): 5374-5385, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917032

RESUMEN

This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.

6.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666575

RESUMEN

Recently, some of us reviewed and studied the photoionization dynamics of C60 that are of great interest to the astrochemical community as four of the diffuse interstellar bands (DIBs) have been assigned to electronic transitions in the C60+ cation. Our previous analysis of the threshold photoelectron spectrum (TPES) of C60 [Hrodmarsson et al., Phys. Chem. Chem. Phys. 22, 13880-13892 (2020)] appeared to give indication of D3d ground state symmetry, in contrast to theoretical predictions of D5d symmetry. Here, we revisit our original measurements taking account of a previous theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), obtained within a vibronic model parametrized on density functional theory/local-density approximation electronic structure involving all hg Jahn-Teller active modes, which couple to the 2Hu components of the ground state of the C60+ cation. By reanalyzing our measured TPES of the ground state of the C60 Buckminsterfullerene, we find a striking resemblance to the theoretical spectrum calculated in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), and we provide assignments for many of the hg modes. In order to obtain deeper insights into the temperature effects and possible anharmonicity effects, we provide complementary modeling of the photoelectron spectrum via classical molecular dynamics (MD) involving density functional based tight binding (DFTB) computations of the electronic structure for both C60 and C60+. The validity of the DFTB modeling is first checked vs the IR spectra of both species which are well established from IR spectroscopic studies. To aid the interpretation of our measured TPES and the comparisons to the ab initio spectrum we showcase the complementarity of utilizing MD calculations to predict the PES evolution at high temperatures expected in our experiment. The comparison with the theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), furthermore, provides further evidence for a D5d symmetric ground state of the C60+ cation in the gas phase, in complement to IR spectroscopy in frozen noble gas matrices. This not only allows us to assign the first adiabatic ionization transition and thus determine the ionization energy of C60 with greater accuracy than has been achieved at 7.598 ± 0.005 eV, but we also assign the two lowest excited states (2E1u and 2E2u) which are visible in our TPES. Finally, we discuss the energetics of additional DIBs that could be assigned to C60+ in the future.

7.
Angew Chem Int Ed Engl ; 63(17): e202401423, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38442011

RESUMEN

Conformational flexibility and chirality both play a key role in molecular recognition. It is therefore very useful to develop spectroscopic methods that simultaneously probe both properties. It has been theoretically predicted that photoelectron circular dichroism (PECD) should be very sensitive to conformational isomerism. However, experimental proof has been less forthcoming and only exists for a very few favorable cases. Here, we present a new PECD scheme based on resonance-enhanced two-photon ionization (RE2PI) using UV/Vis nanosecond laser excitations. The spectral resolution obtained thereby guarantees conformer-selectivity by inducing resonant conformer-specific ππ* S1←S0 transitions. We apply this experimental scheme to the study of chiral 1-indanol, which exists in two conformers linked by a ring inversion and defined by the position of the hydroxyl group, namely axial and equatorial. We show that the PECD of the equatorial and axial forms considerably differ in sign, magnitude and shape. We also discuss the influence of the total ionization energy, vibronic excitation of intermediate and final states, and relative polarization of the excitation and ionization lasers. Conformer-specificity adds a new dimension to the applications of PECD in analytical chemistry addressing now the general case of floppy systems.

8.
Analyst ; 148(24): 6228-6240, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37987708

RESUMEN

A new photoelectron spectroscopic method permitting a quantitative analysis of the volatile headspace of several essential oils is presented and discussed. In particular, we focus on the monoterpene compounds, which are known to be the dominant volatile components in many such oils. The photoelectron spectra of the monoterpene constituents may be effectively isolated by accepting for analysis only those electrons that accompany the production of m/z = 136 ions, and by using low photon energies that restrict cation fragmentation. The monoterpene isomers are then identified and quantified by regression modelling using a library of terpene standard spectra. An advantage of this approach is that pre-concentration of the volatile vapour is not required, and all steps are performed at ambient temperature, avoiding the possible deleterious effects (such as isomerisation/decomposition) that may sometimes arise in gas chromatographic (GC) procedures. As a proof-of-principle demonstration, three citrus oils (lemon, lime, bergamot) are analysed with this approach and the results are compared with reported GC composition profiles obtained for these oils. Potential advantages of the methodology that include multiplex detection and real-time, in situ analysis are identified and discussed. Alternative and faster experimental implementations concerning laboratory-based ionization and detection schemes are proposed and considered, as is the possibility of a straightforward extension towards simultaneous determination of enantiomeric excesses.

9.
Phys Chem Chem Phys ; 25(6): 4501-4510, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722859

RESUMEN

We present a combined experimental and theoretical study on the dissociative ionisation of clusters of pyrene. We measured the experimental appearance energies in the photon energy range 7.2-12.0 eV of the fragments formed from neutral monomer loss for clusters up to the hexamer. The results obtained show a deviation from statistical dissociation. From electronic structure calculations, we suggest that the role of excited states must be considered in the interpretation of experimental results, even in these relatively large systems. Non-statistical effects in the dissociative ionization process of polycyclic aromatic hydrocarbon (PAH) clusters may have an impact on the assessment of mechanisms determining the stability of these clusters in astrophysical environments.

10.
Phys Chem Chem Phys ; 25(45): 30838-30847, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37877862

RESUMEN

Fluorinated species have a pivotal role in semiconductor material chemistry and some of them have been detected beyond the Earth's atmosphere. Achieving good energy accuracy on fluorinated species using quantum chemical calculations has long been a challenge. In addition, obtaining direct experimental thermochemical quantities has also proved difficult. Here, we report the threshold photoelectron and photoion yield spectra of SiF and CF radicals generated with a fluorine reactor. The spectra were analysed with the support of ab initio calculations, resulting in new experimental values for the adiabatic ionisation energies of both CF (9.128 ± 0.006 eV) and SiF (7.379 ± 0.009 eV). Using these values, the underlying thermochemical network of Active Thermochemical Tables was updated, providing further refined enthalpies of formation and dissociation energies of CF, SiF, and their cationic counterparts.

11.
Angew Chem Int Ed Engl ; 62(32): e202306196, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37395384

RESUMEN

Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among gas-phase products. Deactivated [Fe]zeolites can be regenerated by burning coke in air. In situ X-ray absorption spectroscopy demonstrates that the isolated Fe3+ centers in zeolite framework of fresh catalysts are reduced during the reaction to the active sites, including Fe2+ species and Fe (oxy)carbides dispersed in zeolite pores. Photoelectron photoion coincidence spectroscopy results show that methyl radicals are the reaction intermediates formed upon methane activation. Ethane is formed by methyl radical coupling, followed by its dehydrogenation to ethylene. Based on the observation of intermediates including allene, vinylacetylene, 1,3-butadiene, 2-butyne, and cyclopentadiene over [Fe]MFI, a reaction network is proposed leading to polyaromatic species. Such reaction intermediates are not observed over the small-pore [Fe]CHA, where ethylene and ethane are the only gas-phase products.

12.
J Am Chem Soc ; 144(40): 18518-18525, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174230

RESUMEN

We provide compelling experimental and theoretical evidence for the transition state nature of the cyclopropyl cation. Synchrotron photoionization spectroscopy employing coincidence techniques together with a novel simulation based on high-accuracy ab initio calculations reveal that the cation is unstable via its allowed disrotatory ring-opening path. The ring strains of the cation and the radical are similar, but both ring opening paths for the radical are forbidden when the full electronic symmetries are considered. These findings are discussed in light of the early predictions by Longuet-Higgins alongside Woodward and Hoffman; we also propose a simple phase space explanation for the appearance of the cyclopropyl photoionization spectrum. The results of this work allow the refinement of the cyclopropane C-H bond dissociation energy, in addition to the cyclopropyl radical and cation cyclization energies, via the Active Thermochemical Tables approach.

13.
Phys Chem Chem Phys ; 24(29): 17569-17576, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35822946

RESUMEN

Coincidence ion pair production (I+ + I-) (cipp) spectra of I2 were recorded in a double imaging coincidence experiment in the one-photon excitation region of 71 600-74 000 cm-1. The I+ + I- coincidence signal shows vibrational band head structure corresponding to iodine molecule Rydberg states crossing over to ion-pair (I+I-) potential curves above the dissociation limit. The band origin (ν0), vibrational wavenumber (ωe) and anharmonicity constants (ωexe) were determined for the identified Rydberg states. The analysis revealed a number of previously unidentified states and a reassignment of others following a discrepancy in previous assignments. Since the ion pair production threshold is well established, the electric field-dependent spectral intensities were used to derive the cutoff energy in the transitions to the rotational levels of the 7pσ(1/2) (v' = 3) state.

14.
Phys Chem Chem Phys ; 24(4): 2015-2021, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018921

RESUMEN

We present a vacuum ultraviolet (VUV) photoionization study of the gas-phase sulfuric acid (H2SO4) molecule in the 11-14 eV energy range by using the method of synchrotron radiation-based double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy complemented with accurate theoretical calculations. The slow photoelectron spectrum (SPES) of H2SO4 has been acquired and the three electronic states of H2SO4+, X2A, A2A and B2A have been populated and assigned. The adiabatic ionization energy of the H2SO4 molecule towards the X2A cationic ground state is measured at 11.684 ± 0.006 eV, in accordance with high-level calculated findings. With increasing photon energies, the H2SO4+ cation dissociates into HSO3+ and OH fragments and their adiabatic appearance energy is measured at 13.498 ± 0.007 eV. Then, the enthalpies of formation for the species involved in the photoionization and dissociative photoionization have been determined through a thermochemical cycle.

15.
Phys Chem Chem Phys ; 24(18): 10826-10837, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35485277

RESUMEN

tert-Butyl hydroperoxide (tBuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase tBuOOH in the 9.0 - 11.0 eV energy range, including dissociative ionization processes. Computations consist of the determination of the structures, vibrational frequencies and the energetics of neutral and ionic tBuOOH. The Franck-Condon spectrum for the tBuOOH+ (X+) + e- ← tBuOOH (X) + hν transition is computed, where special treatment is undertaken because of the flexibility of tBuOOH, in particular regarding the OOH group. Through comparison of the experimental mass-selected threshold photoelectron spectra with explicitly correlated coupled cluster calculations and Franck-Condon simulations that account for the flexibility of the molecule, an estimation of the ionization energy is given. The appearance energy of the only fragment observed within the above-mentioned energy range, identified as the tert-butyl C4H9+, is also reported. Finally, the signal branching ratio between the parent and the fragment ions is provided as a function of photon energy, essential to quantify tBuOOH in gas-phase oxidation/combustion experiments via advanced mass spectrometry techniques.

16.
J Phys Chem A ; 126(34): 5784-5799, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998573

RESUMEN

Cyclohexane oxidation chemistry was investigated using a near-atmospheric pressure jet-stirred reactor at T = 570 K and equivalence ratio ϕ = 0.8. Numerous intermediates including hydroperoxides and highly oxygenated molecules were detected using synchrotron vacuum ultraviolet photoelectron photoion coincidence spectroscopy. Supported by high-level quantum calculations, the analysis of photoelectron spectra allowed the firm identification of molecular species formed during the oxidation of cyclohexane. Besides, this work validates recently published gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry data. Unambiguous detection of characteristic hydroperoxides (e.g., γ-ketohydroperoxides) and their respective decomposition products provides support for the conventional O2 addition channels up to the third addition and their relative contribution to the cyclohexane oxidation. The results were also compared with the predictions of a recently proposed new detailed kinetic model of cyclohexane oxidation. Most of the predictions are in line with the current experimental findings, highlighting the robustness of the kinetic model. However, the analysis of the recorded slow photoelectron spectra indicating the possible presence of C5 species in the kinetic model provides hints that the substituted cyclopentyl radicals from cyclohexyl ring opening might play a minor role in cyclohexane oxidation. Potentially important missing reactions are also discussed.

17.
J Chem Phys ; 157(1): 014303, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803794

RESUMEN

The first measurement of the photoelectron spectrum of the silylidyne free radical, SiH, is reported between 7 and 10.5 eV. Two main photoionizing transitions involving the neutral ground state, X+1Σ+ ← X2Π and a+3Π â† X2Π, are assigned by using ab initio calculations. The corresponding adiabatic ionization energies are derived, IEad(X+1Σ+) = 7.934(5) eV and IEad(a+3Π) = 10.205(5) eV, in good agreement with our calculated values and the previous determination by Berkowitz et al. [J. Chem. Phys. 86, 1235 (1987)] from a photoionization mass spectrometric study. The photoion yield of SiH recorded in this work exhibits a dense autoionization landscape similar to that observed in the case of the CH free radical [Gans et al., J. Chem. Phys. 144, 204307 (2016)].

18.
Genet Med ; 23(9): 1624-1635, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040189

RESUMEN

PURPOSE: The human chromosome 19q13.11 deletion syndrome is associated with a variable phenotype that includes aplasia cutis congenita (ACC) and ectrodactyly as specific features. UBA2 (ubiquitin-like modifier-activating enzyme 2) lies adjacent to the minimal deletion overlap region. We aimed to define the UBA2-related phenotypic spectrum in humans and zebrafish due to sequence variants and to establish the mechanism of disease. METHODS: Exome sequencing was used to detect UBA2 sequence variants in 16 subjects in 7 unrelated families. uba2 loss of function was modeled in zebrafish. Effects of human missense variants were assessed in zebrafish rescue experiments. RESULTS: Seven human UBA2 loss-of-function and missense sequence variants were detected. UBA2-phenotypes included ACC, ectrodactyly, neurodevelopmental abnormalities, ectodermal, skeletal, craniofacial, cardiac, renal, and genital anomalies. uba2 was expressed in zebrafish eye, brain, and pectoral fins; uba2-null fish showed deficient growth, microcephaly, microphthalmia, mandibular hypoplasia, and abnormal fins. uba2-mRNAs with human missense variants failed to rescue nullizygous zebrafish phenotypes. CONCLUSION: UBA2 variants cause a recognizable syndrome with a wide phenotypic spectrum. Our data suggest that loss of UBA2 function underlies the human UBA2 monogenic disorder and highlights the importance of SUMOylation in the development of affected tissues.


Asunto(s)
Anomalías Múltiples , Displasia Ectodérmica , Deformidades Congénitas de las Extremidades , Animales , Displasia Ectodérmica/genética , Humanos , Deformidades Congénitas de las Extremidades/genética , Enzimas Activadoras de Ubiquitina , Pez Cebra/genética
19.
Phys Chem Chem Phys ; 23(14): 8292-8299, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33875993

RESUMEN

Coincidence ion pair production (cipp) spectra of F2 were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975-126 210 cm-1. The F+ + F- signal shows a rotational band head structure, corresponding to F2 Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F2**): one Π and four Σ states. The lowest-energy Rydberg state spectrum observed (T0 = 125 999 cm-1) lacked some of the predicted rotational structure, which allowed an accurate determination of the ion pair production threshold of 15.62294± 0.00043 eV. Using the well-known atomic fluorine ionization energy and electron affinity, this number leads to a ground state F-F dissociation energy of 1.60129± 0.00044 eV. Photoelectron photoion coincidence (PEPICO) experiments were also carried out on F2 and the dissociative photoionization threshold to F+ + F was determined as 19.0242 ± 0.0006 eV. Using the atomic fluorine ionization energy, this can be converted to an F2 dissociation energy of 1.60132± 0.00062 eV, further confirming the cipp-derived value above. Because the two experiments were independently energy-calibrated, they can be averaged to 1.60130± 0.00036 eV and this value can be used to derive the fluorine atom's 0 K heat of formation as 77.251± 0.017 kJ mol-1. This latter is in excellent agreement with the latest Active Thermochemical Table (ATcT) value but improves its accuracy by almost a factor of three.

20.
Phys Chem Chem Phys ; 23(42): 24140-24153, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34666343

RESUMEN

Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium(III)-tris-(acetylacetonato) complex, Ru(acac)3. Enantiomerically pure Δ- or Λ-Ru(acac)3, characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac)3, which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localization and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac)3, a system exhibiting D3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA