Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
2.
Nucleic Acids Res ; 50(4): 2302-2318, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137199

RESUMEN

During retroviral replication, the full-length RNA serves both as mRNA and genomic RNA. However, the mechanisms by which the HIV-1 Gag protein selects the two RNA molecules that will be packaged into nascent virions remain poorly understood. Here, we demonstrate that deposition of N6-methyladenosine (m6A) regulates full-length RNA packaging. While m6A deposition by METTL3/METTL14 onto the full-length RNA was associated with increased Gag synthesis and reduced packaging, FTO-mediated demethylation promoted the incorporation of the full-length RNA into viral particles. Interestingly, HIV-1 Gag associates with the RNA demethylase FTO in the nucleus and contributes to full-length RNA demethylation. We further identified two highly conserved adenosines within the 5'-UTR that have a crucial functional role in m6A methylation and packaging of the full-length RNA. Together, our data propose a novel epitranscriptomic mechanism allowing the selection of the HIV-1 full-length RNA molecules that will be used as viral genomes.


Asunto(s)
VIH-1 , Regiones no Traducidas 5' , Adenosina/genética , Adenosina/metabolismo , Productos del Gen gag/genética , VIH-1/metabolismo , Metilación , ARN Viral/genética , ARN Viral/metabolismo , Virión/metabolismo
3.
RNA Biol ; 18(5): 745-758, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33103564

RESUMEN

Translation initiation of the human immunodeficiency virus type-1 (HIV-1) full-length RNA has been shown to occur through cap-dependent and IRES-driven mechanisms. Previous studies suggested that the nuclear cap-binding complex (CBC) rather than eIF4E drives cap-dependent translation of the full-length RNA and we have recently reported that the CBC subunit CBP80 supports the function of the viral protein Rev during nuclear export and translation of this viral transcript. Ribosome recruitment during CBC-dependent translation of cellular mRNAs relies on the activity CBP80/20 translation initiation factor (CTIF), which bridges CBP80 and the 40S ribosomal subunit through interactions with eIF3g. Here, we report that CTIF inhibits HIV-1 and HIV-2 Gag synthesis from the full-length RNA. Our results indicate that CTIF associates with HIV-1 Rev through its N-terminal domain and is recruited onto the full-length RNA ribonucleoprotein complex in order to interfere with Gag synthesis. We also demonstrate that CTIF induces the cytoplasmic accumulation of Rev impeding the association of the viral protein with CBP80. We finally show that Rev interferes with the association of CTIF with CBP80 indicating that CTIF and Rev compete for the CBC subunit.


Asunto(s)
Factores Eucarióticos de Iniciación/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Células Cultivadas , Regulación hacia Abajo , Células HEK293 , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Biosíntesis de Proteínas/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/fisiología
4.
Nucleic Acids Res ; 46(21): 11539-11552, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30239828

RESUMEN

Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.


Asunto(s)
Factor 4A Eucariótico de Iniciación/genética , VIH-1/genética , Complejo Proteico Nuclear de Unión a la Caperuza/genética , ARN Mensajero/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Línea Celular , Factor 4A Eucariótico de Iniciación/metabolismo , VIH-1/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Unión Proteica , Empalme del ARN , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Biochim Biophys Acta ; 1859(5): 719-30, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27012366

RESUMEN

DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.


Asunto(s)
ARN Helicasas DEAD-box/genética , Infecciones por VIH/genética , VIH-1/genética , Carioferinas/genética , Receptores Citoplasmáticos y Nucleares/genética , Transporte Activo de Núcleo Celular/genética , Regulación Viral de la Expresión Génica , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Viral/genética , Replicación Viral/genética , Proteína Exportina 1
6.
Nucleic Acids Res ; 42(20): 12861-75, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352557

RESUMEN

During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a 'packageable' gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.


Asunto(s)
Gránulos Citoplasmáticos/virología , VIH-2/genética , ARN Viral/metabolismo , Ensamble de Virus , Gránulos Citoplasmáticos/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Genoma Viral , VIH-2/fisiología , Células HeLa , Humanos , Biosíntesis de Proteínas , ARN Viral/análisis , ARN Viral/biosíntesis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
7.
bioRxiv ; 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34031654

RESUMEN

Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.

8.
Res Sq ; 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34075371

RESUMEN

Several genome-wide CRISPR knockout screens have been conducted to identify host factors regulating SARS-CoV-2 replication, but the models used have often relied on overexpression of ACE2 receptor. Additionally, such screens have yet to identify the protease TMPRSS2, known to be important for viral entry at the plasma membrane. Here, we conducted a meta-analysis of these screens and showed a high level of cell-type specificity of the identified hits, arguing for the necessity of additional models to uncover the full landscape of SARS-CoV-2 host factors. We performed genome-wide knockout and activation CRISPR screens in Calu-3 lung epithelial cells, as well as knockout screens in Caco-2 intestinal cells. In addition to identifying ACE2 and TMPRSS2 as top hits, our study reveals a series of so far unidentified and critical host-dependency factors, including the Adaptins AP1G1 and AP1B1 and the flippase ATP8B1. Moreover, new anti-SARS-CoV-2 proteins with potent activity, including several membrane-associated Mucins, IL6R, and CD44 were identified. We further observed that these genes mostly acted at the critical step of viral entry, with the notable exception of ATP8B1, the knockout of which prevented late stages of viral replication. Exploring the pro- and anti-viral breadth of these genes using highly pathogenic MERS-CoV, seasonal HCoV-NL63 and -229E and influenza A orthomyxovirus, we reveal that some genes such as AP1G1 and ATP8B1 are general coronavirus cofactors. In contrast, Mucins recapitulated their known role as a general antiviral defense mechanism. These results demonstrate the value of considering multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential new targets for therapeutic interventions.

9.
J Virol Methods ; 255: 14-22, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29425681

RESUMEN

Self-inactivating VSVG-pseudotyped murine leukemia virus (SIN-VSVG-MLV) has been widely used to generate stable cell lines and produce gene delivery vectors. Despite the broad cellular tropism of the VSVG-pseudotyped MLV, we observed differential viral transduction efficiency depending on the host cell type used. In order to determine the mechanism underlying these differences, we used a GFP-expressing SIN-VSVG-MLV and analyzed the major steps of viral transduction in different cell lines including human epithelial, T-lymphocytes, monocytes and murine fibroblast cells. We observed the better transduction efficiency in HeLa cells, which was 20-fold higher than THP-1 and NIH/3T3 cells. To quantify viral internalization, we determined genomic RNA content by quantifying the early reverse transcription product. Genomic RNA and transduction levels were correlated with HeLa cells showing the higher amount of early RT product followed by tsA201 cells, while NIH/3T3, Jurkat and THP-1 had the lowest amounts. Similar results were observed when the late reverse transcription product was analyzed. Reverse transcription efficiency was 66-85% in HeLa cells and about 30% in tsA201, NIH/3T3, Jurkat and THP-1 cells. Viral integration, determined by Alu-Nested-qPCR, was higher for HeLa and lowerst for Jurkat and THP-1 cells. Interestingly, we observed that viral entry was correlated with the cellular availability of clathrin-mediated endocytosis, which was higher in HeLa and tsA201 cells, potentially explaining the higher rates of SIN-VSVG-MLV transduction and early RT synthesis observed in these cell lines. In conclusion, the SIN-VSVG-MLV vector showed significantly different rates of infectivity depending on the host cell type, possibly due to differential rates of viral internalization.


Asunto(s)
Vectores Genéticos/genética , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Línea Celular , Humanos , Virus de la Leucemia Murina/fisiología , Glicoproteínas de Membrana/genética , Ratones , Transducción Genética , Proteínas del Envoltorio Viral/genética
10.
Biomolecules ; 5(4): 2808-39, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26492277

RESUMEN

Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. OPEN ACCESS Biomolecules 2015, 5 2809 We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking.


Asunto(s)
Núcleo Celular/metabolismo , VIH-1/fisiología , ARN Viral/metabolismo , Transactivadores/metabolismo , Replicación Viral , Transporte Activo de Núcleo Celular , Núcleo Celular/virología , ARN Helicasas DEAD-box/metabolismo , VIH-1/metabolismo , Células HeLa , Humanos , Carioferinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , ARN Helicasas , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Liberación del Virus , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA