Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 35(17-18): 1229-1242, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385258

RESUMEN

Multiple transcription factors have been shown to promote pancreatic ß-cell differentiation, yet much less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrinogenesis in the embryonic pancreas. However, pancreatic Rest knockout mice failed to show abnormal numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we observed a marked increase in pancreatic endocrine cell formation. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts and induced ß-cell-specific genes in human adult duct-derived organoids. We also defined genomic sites that are bound and repressed by REST in the embryonic pancreas. Our findings show that REST-dependent inhibition ensures a balanced production of endocrine cells from embryonic pancreatic progenitors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pez Cebra , Animales , Diferenciación Celular/genética , Ratones , Organogénesis/genética , Páncreas , Pez Cebra/genética
2.
Genes Dev ; 27(1): 52-63, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23271347

RESUMEN

Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet ß cells (Ring1b(ßKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Células Madre/citología , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Embrión de Mamíferos , Epigénesis Genética , Masculino , Ratones , Neuronas/metabolismo , Complejo Represivo Polycomb 1/genética , Ubiquitina-Proteína Ligasas/genética
3.
Genome Res ; 20(6): 722-32, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20395405

RESUMEN

The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells.


Asunto(s)
Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/metabolismo , Páncreas/embriología , Proteínas Represoras/genética , Animales , Separación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Epigénesis Genética , Citometría de Flujo , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Proteínas del Grupo Polycomb
4.
Nat Cell Biol ; 24(10): 1528-1540, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202974

RESUMEN

The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic ß cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito , Regiones Promotoras Genéticas , ARN Largo no Codificante , Animales , Humanos , Ratones , Factor Nuclear 1-alfa del Hepatocito/genética , Mamíferos , ARN Largo no Codificante/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
5.
Dev Cell ; 57(16): 1922-1936.e9, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998583

RESUMEN

Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations.


Asunto(s)
Diabetes Mellitus , Factores de Transcripción , Animales , Diferenciación Celular/genética , Diabetes Mellitus/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Ratones , Mutación/genética , Páncreas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
6.
Genome Biol ; 23(1): 196, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109769

RESUMEN

BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , ARN Largo no Codificante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Empalme del ARN , ARN Largo no Codificante/metabolismo
7.
Cell Rep ; 35(2): 108981, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852861

RESUMEN

Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Diabetes Mellitus/genética , Insulina/genética , Páncreas/metabolismo , Mutación Puntual , Proteínas Represoras/genética , Transactivadores/genética , Alelos , Animales , Cromatina/química , Cromatina/patología , Proteínas de Unión al ADN/deficiencia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Insulina/deficiencia , Ratones , Ratones Transgénicos , Páncreas/crecimiento & desarrollo , Páncreas/patología , Regiones Promotoras Genéticas , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Transcripción Genética
8.
Nat Genet ; 51(7): 1137-1148, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253982

RESUMEN

Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.


Asunto(s)
Cromatina/química , Diabetes Mellitus Tipo 2/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Cromatina/genética , Estudios de Cohortes , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Conformación Molecular , Regiones Promotoras Genéticas
9.
PLoS One ; 12(2): e0171508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28225770

RESUMEN

Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Grupo Polycomb/genética , Elementos de Respuesta/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Islotes Pancreáticos/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Grupo Polycomb/metabolismo
10.
Cell Metab ; 25(2): 400-411, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28041957

RESUMEN

Recent studies have uncovered thousands of long non-coding RNAs (lncRNAs) in human pancreatic ß cells. ß cell lncRNAs are often cell type specific and exhibit dynamic regulation during differentiation or upon changing glucose concentrations. Although these features hint at a role of lncRNAs in ß cell gene regulation and diabetes, the function of ß cell lncRNAs remains largely unknown. In this study, we investigated the function of ß cell-specific lncRNAs and transcription factors using transcript knockdowns and co-expression network analysis. This revealed lncRNAs that function in concert with transcription factors to regulate ß cell-specific transcriptional networks. We further demonstrate that the lncRNA PLUTO affects local 3D chromatin structure and transcription of PDX1, encoding a key ß cell transcription factor, and that both PLUTO and PDX1 are downregulated in islets from donors with type 2 diabetes or impaired glucose tolerance. These results implicate lncRNAs in the regulation of ß cell-specific transcription factor networks.


Asunto(s)
Redes Reguladoras de Genes/genética , Células Secretoras de Insulina/metabolismo , ARN Largo no Codificante/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Familia de Multigenes , Fenotipo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Nat Genet ; 46(2): 136-143, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413736

RESUMEN

Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Formaldehído , Estudio de Asociación del Genoma Completo , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Navegador Web
12.
Cell Metab ; 16(4): 435-48, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23040067

RESUMEN

A significant portion of the genome is transcribed as long noncoding RNAs (lncRNAs), several of which are known to control gene expression. The repertoire and regulation of lncRNAs in disease-relevant tissues, however, has not been systematically explored. We report a comprehensive strand-specific transcriptome map of human pancreatic islets and ß cells, and uncover >1100 intergenic and antisense islet-cell lncRNA genes. We find islet lncRNAs that are dynamically regulated and show that they are an integral component of the ß cell differentiation and maturation program. We sequenced the mouse islet transcriptome and identify lncRNA orthologs that are regulated like their human counterparts. Depletion of HI-LNC25, a ß cell-specific lncRNA, downregulated GLIS3 mRNA, thus exemplifying a gene regulatory function of islet lncRNAs. Finally, selected islet lncRNAs were dysregulated in type 2 diabetes or mapped to genetic loci underlying diabetes susceptibility. These findings reveal a new class of islet-cell genes relevant to ß cell programming and diabetes pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/patología , Regulación hacia Abajo , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Ratones , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA