Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Pineal Res ; 50(3): 328-35, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21244479

RESUMEN

Melatonin (N-acetyl-5-hydroxytryptamine) is a pineal hormone widely known for its antioxidant properties, both in vivo and by direct capture of free radicals in vitro. Although some metabolites and oxidation products of melatonin have been identified, the molecular mechanism by which melatonin exerts its antioxidant properties has not been totally unravelled. This study investigated the reaction mechanism of oxidation of melatonin by radio-induced reactive oxygen species, generated by gamma radiolysis of water for aqueous solutions of melatonin (from 20 to 200 µm), in the presence or absence of molecular oxygen. The hydroxyl radical was found to be the unique species able to initiate the oxidation process, leading to three main products, e.g. N(1)-acetyl-N(2)-formyl-5-methoxykynurenin (AFMK), N(1)-acetyl-5-methoxykynurenin (AMK) and hydroxymelatonin (HO-MLT). The generation of AFMK and HO-MLT strongly depended on the presence of molecular oxygen in solution: AFMK was the major product in aerated solutions (84%), whereas HO-MLT was favoured in the absence of oxygen (86%). Concentrations of AMK remained quite low, and AMK was proposed to result from a chemical hydrolysis of AFMK in solution. A K-value of 1.1 × 10(-4) was calculated for this equilibrium. Both hydrogen peroxide and superoxide dismutase had no effect on the radio-induced oxidation of melatonin, in good accordance for the second case with the poor reactivity of the superoxide anion towards melatonin. Finally, a reaction mechanism was proposed for the oxidation of melatonin in vitro.


Asunto(s)
Melatonina/química , Especies Reactivas de Oxígeno/química , Antioxidantes/química , Radical Hidroxilo/química , Oxidación-Reducción , Superóxidos/química
2.
J Pineal Res ; 51(3): 286-96, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21545523

RESUMEN

This study investigated the in vitro protective effects of melatonin against oxidation of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC) liposomes [(PLPC) = 250 µm] and low-density lipoproteins (LDL, 3 g/L total concentration) by hydroxyl radicals produced by water gamma radiolysis. Conjugated dienes (CD) and hydroperoxides from cholesteryl esters (CEOOH) and phospholipids (PCOOH) were measured as indices of lipid peroxidation. Protein (apoB) oxidation in LDL was assessed by carbonyl groups. Two LDL antioxidants (vitamin E and ß-carotene) were monitored as a function of the radiation dose. Three concentrations of melatonin were studied in PLPC liposomes, i.e., 20, 50 and 100 µm, and one in LDL, i.e., 100 µm. Melatonin consumption was also followed up in both lipid models upon irradiation, together with the residual PLPC concentration in liposomes. In PLPC liposomes, scavenging of lipid-derived peroxyl radicals was not the only phenomenon to explain the protective properties of melatonin towards lipid peroxidation. Indeed, melatonin also reacted with hydroxyl radicals generated in aqueous phase, which led us to suggest that hydroxyl radicals reacted relatively slowly with PLPC. Melatonin was efficient in lowering lipid peroxidation in LDL, as shown by the decrease in the formation of CDs and in hydroperoxides. Moreover, melatonin clearly slowed radio-induced apolipoprotein B carbonylation and protected α-tocopherol and ß-carotene in LDL.


Asunto(s)
Radicales Libres/química , Peroxidación de Lípido , Liposomas , Melatonina/farmacología , Fosfatidilcolinas/química , Humanos
3.
Rapid Commun Mass Spectrom ; 24(5): 634-42, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20155763

RESUMEN

trans-Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenolic compound that exhibits antioxidant properties. Our study aimed at studying the HO*-induced oxidation of resveratrol (100 micromol.L(-1)) in aerated aqueous solutions. Gamma radiolysis of water was used to generate HO*/O(2)(*-) free radicals (I = 10 Gy.min(-1), dose = 400 Gy). Oxidation products were identified by direct infusion mass spectrometry and high-performance liquid chromatography/mass spectrometry. For each product, structural elucidation was based on simple mass spectra, fragmentation spectra and deuterium/hydrogen exchange spectra; the comparison with mass spectra of synthetic products provided valuable information allowing the complete identification of the oxidation products. Four products resulting from the direct attack of HO* radicals towards resveratrol were identified respectively as piceatannol (trans-3,5,3',4'-tetrahydroxystilbene), 3,5-dihydroxybenzoic acid, 3,5-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Estilbenos/química , Agua/química , Benzaldehídos/química , Rayos gamma , Hidroxibenzoatos/química , Oxidación-Reducción , Resorcinoles , Resveratrol
4.
Radiat Res ; 171(5): 622-30, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19580498

RESUMEN

Large unilamellar vesicles of 1-hexanoyl-2-(9Z-12Z-octadecadienoyl)-sn-glycero-3-phosphocholine (PLPC) have been used as model membrane to investigate the effect of increasing amount of cardiolipin (1',3'-bis-[1,2-Di-(9Z-12Z-octadecadienoyl)-sn-glycero-3-phospho]-sn-glycerol, CL) on the peroxidizability of the lipid phase. Hydroxyl radicals generated by gamma radiolysis of water initiated the lipid peroxidation. Both peroxidation products (conjugated dienes and hydroperoxides of PLPC, mono- and dihydroperoxides of CL) and disappearance of CL and PLPC were assessed as a function of the radiation dose (25 to 400 Gy, I = 10 Gy min(-1)). Our results show that the addition of 5% to 15% CL to large unilamellar vesicles (concentration ratio) produces almost complete inhibition of PLPC peroxidation. Thus, for 15% CL (known to be the proportion of CL in the inner mitochondrial membrane), the radiolytic yield of formation of PLPC hydroperoxides is reduced to zero, whereas it is equal to (3.1 +/- 0.2) x 10(-7) mol J(-1) for CL hydroperoxides, showing the importance of the targeted CL. For this concentration ratio (CL/ PLPC 15%), we have established the balance equation between the consumption of CL [G(-CL) = (2.8 +/- 0.1) x 10(-7) mol J(-1)] and the formation of CL hydroperoxides [G(CLOOH(T)) = (3.1 +/- 0.2) x 10(-7) mol J(-1)]. In addition, the radiolytic yields of disappearance of PLPC and CL have been determined [(1.5 +/- 0.1) x 10(-7) mol J(-1) and (2.8 +/- 0.1) x 10(-7) mol J(-1), respectively], their sum [(4.3 +/- 0.2) x 10(-7) mol J(-1)] being higher than G(HO.) (2.8 x 10(-7) mol J(-1)). However, there is no balance between the radiolytic yield of formation of PLPC hydroperoxides [G (PCOOH(T)) approximately 0] and the yield of disappearance of PLPC [(1.5 +/- 0.1) x 10(-7) mol J(-1)], likely because lipid fragments (not measured in this work) could be generated from HO(.) reaction on the polar head of PLPC. These results have been interpreted by assuming that the hydroxyl radicals attack in competition both lipid targets, i.e. PLPC and CL, with a higher sensitivity to CL oxidation. It can be concluded that a little amount of CL (10-15% CL/ PLPC concentration ratio) may exert a strong protective effect against the HO(.)-induced peroxidation of PLPC.


Asunto(s)
Cardiolipinas/metabolismo , Rayos gamma , Peroxidación de Lípido , Fosfatidilcolinas/metabolismo , Liposomas Unilamelares/efectos de la radiación , Liposomas Unilamelares/metabolismo
5.
Biochimie ; 90(10): 1442-51, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18555026

RESUMEN

Cytochrome c (cyt c) is an electron carrier involved in the mitochondrial respiratory chain and a critical protein in apoptosis. The oxidation of cytochrome c can therefore be relevant biologically. We studied whether cytochrome c underwent the attack of reactive oxygen species (ROS) during ionizing irradiation-induced oxidative stress. ROS were generated via water radiolysis under ionizing radiation (IR) in vitro. Characterization of oxidation was performed by mass spectrometry, after tryptic digestion, and UV-visible spectrophotometry. When both hydroxyl and superoxide free radicals were generated during water radiolysis, only five tryptic peptides of cyt c were reproducibly identified as oxidized according to a relation that was dependent of the dose of ionizing radiation. The same behavior was observed when hydroxyl free radicals were specifically generated (N(2)O-saturated solutions). Specific oxidation of cyt c by superoxide free radicals was performed and has shown that only one oxidized peptide (MIFAGIK+16), corresponding to the oxidation of Met80 into methionine sulfoxide, exhibited a radiation dose-dependent formation. In addition, the enzymatic site of cytochrome c was sensitive to the attack of both superoxide and hydroxyl radicals as observed through the reduction of Fe(3+), the degradation of the protoporphyrin IX and the oxidative disruption of the Met80-Fe(3+) bond. Noteworthy, the latter has been involved in the conversion of cyt c to a peroxidase. Finally, Met80 appears as the most sensitive residue towards hydroxyl but also superoxide free radicals mediated oxidation.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Radical Hidroxilo/química , Superóxidos/química , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta en la Radiación , Caballos , Radical Hidroxilo/farmacología , Espectrometría de Masas , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Péptidos/análisis , Péptidos/química , Péptidos/metabolismo , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Superóxidos/farmacología
6.
Chem Phys Lipids ; 155(1): 48-56, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18590713

RESUMEN

This study investigated the in vitro protective effects of three derivatives of resveratrol, i.e., piceatannol (trans-3,5,3',4'-tetrahydroxystilbene), PDM2 (1,3-dichloro-5-[(1E)-2-(4-chlorophenyl)ethenyl]-benzene) and PDM11 ((E)-5-[2-(4-chlorophenyl)ethenyl]-1,3-dimethoxyphenyl-ethene), compared with resveratrol as reference compound, against oxidation of linoleate micelles (10(-2)M) initiated by radiolysis-generated hydroxyl radicals. Lipid peroxidation was monitored by conjugated dienes (differential absorbance at 234nm), and by hydroperoxides (reverse phase HPLC with chemiluminescence detection). The higher the concentration of resveratrol or piceatannol (from 10(-5)M to 10(-4)M), the stronger the antioxidant ability. Piceatannol, with the presence of an additional hydroxyl group, showed a better antioxidant effect than resveratrol for a given concentration (competition with the fatty acid to scavenge lipid peroxyl radicals LOO), whereas PDM2 and PDM11, without any hydroxyl group, did not exhibit any significant protective effect. A lower limit for the LOO rate constant has been estimated for piceatannol (>/=1.4x10(5)M(-1)s(-1)) and for resveratrol (>/=0.3x10(5)M(-1)s(-1)).


Asunto(s)
Ácido Linoleico/química , Micelas , Estilbenos/farmacología , Química Física/métodos , Cromatografía Líquida de Alta Presión/métodos , Relación Dosis-Respuesta en la Radiación , Depuradores de Radicales Libres/metabolismo , Concentración de Iones de Hidrógeno , Radical Hidroxilo , Peroxidación de Lípido , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Resveratrol , Estilbenos/química
7.
Free Radic Res ; 39(5): 519-28, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16036328

RESUMEN

Archidonate peroxidation has been studied using HO* radicals radiolytically generated as initiators of this process. Irradiated aqueous solutions of arachidonate (between 0.01 and 25 mM at pH 10.5) have been characterised by means of conjugated dienes measurement (234 nm-absorption spectroscopy) and hydroperoxide detection (high-performance liquid chromatography coupled with a chemiluminescence detection). Radiation-induced peroxidation of arachidonate gives a different trend of peroxide products, depending on the degree of substrate interaction; endoperoxide and hydro-endoperoxide being favored at low concentrations (monomer/oligomer) and monohydroperoxide at high concentrations (micellar form). The experimental ratios G(Hydro2)/G(Hydro1) increase significantly only for arachidonate concentrations higher than 1 mM, i.e. in micellar medium. However, between 0.1 and 1?mM in arachidonate, G-values (for conjugated dienes, Hydro2 and Hydro1) remain nearly constant, meaning that the physical arrangement of the solution changes: Aggregation occurs. The experimental yields of conjugated dienes formation indicated that GDienes > GHO for [arachidonate]>2.5 mM, indicating that a chain propagation process had occurred. Radiolytic yields and structural identification (HPLC-MS analysis) of peroxidation products allowed us to propose a mechanism for the formation of both hydroperoxides.


Asunto(s)
Ácido Araquidónico/efectos de la radiación , Rayos gamma , Peróxido de Hidrógeno/análisis , Radical Hidroxilo/análisis , Ácido Araquidónico/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Micelas
8.
Redox Rep ; 8(2): 95-104, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12804012

RESUMEN

This study was designed to evaluate the effect of high concentrations of melatonin on the peroxidation of human low density lipoproteins (LDLs) initiated by O(2)(*-) and ethanol-derived peroxyl radicals (RO(2)(*)) from water gamma radiolysis in the presence of ethanol. LDL (3 g/l; total LDL concentration) was oxidized in the absence of melatonin or in its presence at three concentrations (50 x 10(-6), 100 x 10(-6) or 250 x 10(-6) mol/l) in ethanol. Radiolytic yields (i.e. number of mole consumed or produced per Joule) of the markers of lipid peroxidation were determined (i.e. decrease in the endogenous antioxidants alpha-tocopherol and beta-carotene, formation of conjugated dienes and of thiobarbituric acid-reactive substances [TBARS]). Melatonin decreased the yields of lipid peroxidation products and delayed the onset of the propagation phase for conjugated dienes and TBARS in a concentration-dependent manner. Nevertheless, melatonin did not protect endogenous alpha-tocopherol against peroxyl-induced oxidation (probably due to a lower scavenging capacity than that of alpha-tocopherol towards peroxyl radicals), but delayed the consumption of LDL endogenous beta-carotene and decreased its rate of disappearance. The effect of melatonin seemed to be the highest for a melatonin concentration of 250 x 10(-6) mol/l.


Asunto(s)
Lipoproteínas LDL/metabolismo , Melatonina/metabolismo , Oxígeno/metabolismo , beta Caroteno/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Etanol/farmacología , Radicales Libres , Rayos gamma , Humanos , Peroxidación de Lípido , Modelos Químicos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , alfa-Tocoferol/metabolismo
9.
Biochimie ; 94(3): 741-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22120111

RESUMEN

trans-Resveratrol (RVT) (3,5,4'-trihydroxystilbene), a polyphenolic constituent of red wine, is thought to be beneficial in reducing the incidence of cardiovascular diseases, partly via its antioxidant properties. However, the mechanism of action by which trans-resveratrol displays its antioxidant effect has not been totally unravelled. This study aimed at establishing a comprehensive scheme of the reaction mechanisms of the direct scavenging of HO(*) and O(2)(*-) radicals generated by water gamma radiolysis. Aerated aqueous solutions of trans-RVT (from 10 to 100µmolL(-1)) were irradiated with increasing radiation doses (from 25 to 400Gy) and further analyzed by UV-visible absorption spectrophotometry for detection of trans-RVT oxidation products. Separation and quantification of RVT and its four oxidation products previously identified by mass spectrometry, i.e., piceatannol (PCT), 3,5-dihydroxybenzoic acid (3,5-DHBA), 3,5-dihydroxybenzaldehyde (3,5-DHB) and para-hydroxybenzaldehyde (PHB), were performed by HPLC/UV-visible spectrophotometry. Determination of the radiolytic yields of trans-RVT consumption and oxidation product formation has allowed us to establish balance between trans-RVT disappearance and the sum of oxidation products formation. Under our conditions, O(2)(-) radicals seemed to poorly initiate oxidation of trans-RVT, whereas the latter, whatever its initial concentration, quantitatively reacted with HO() radicals, via a dismutation mechanism. Two reaction pathways involving HO()-induced trans-RVT primary radicals have been proposed to explain the formation of the oxidation end-products of trans-RVT.


Asunto(s)
Radical Hidroxilo/química , Estilbenos/química , Rayos gamma , Oxidación-Reducción , Especies Reactivas de Oxígeno/química , Resveratrol
10.
Chem Phys Lipids ; 163(6): 538-44, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20398641

RESUMEN

The oxidative interaction of cytochrome c (Cyt c) with liposomes of Palmitoyl Linoleyl Phosphatidyl Choline (PLPC) initiated by radio-induced free radicals was investigated. Results showed that the peroxidation of PLPC is decreased in the presence of Cyt c, meaning that this latter is the preferential target of hydroxyl radicals. In addition, when Cyt c was incubated with peroxidized PLPC, it was found to be able to decompose hydroperoxides of PLPC into hydroxides. The peroxidase activity of Cyt c proceeded via the opening of the tertiary structure of Cyt c, as suggested by the loss of the sixth coordination bond of the heme-iron. Even if it is known to preferentially interact with cardiolipin, this work shows that Cyt c is also able to interact with hydroperoxide species of non-anionic phospholipids.


Asunto(s)
Citocromos c/química , Liposomas/química , Fosfatidilcolinas/química , Especies Reactivas de Oxígeno/química , Cardiolipinas/química , Radical Hidroxilo/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA