Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 108(2): 751-6, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21177428

RESUMEN

Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis through the discovery of FTY720 (fingolimod), recently approved as an oral treatment for relapsing forms of multiple sclerosis. Its mechanism of action is thought to be immunological through an active phosphorylated metabolite, FTY720-P, that resembles S1P and alters lymphocyte trafficking through receptor subtype S1P(1). However, previously reported expression and in vitro studies of S1P receptors suggested that direct CNS effects of FTY720 might theoretically occur through receptor modulation on neurons and glia. To identify CNS cells functionally contributing to FTY720 activity, genetic approaches were combined with cellular and molecular analyses. These studies relied on the functional assessment, based on clinical score, of conditional null mouse mutants lacking S1P(1) in CNS cell lineages and challenged by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. All conditional null mutants displayed WT lymphocyte trafficking that responded normally to FTY720. In marked contrast, EAE was attenuated and FTY720 efficacy was lost in CNS mutants lacking S1P(1) on GFAP-expressing astrocytes but not on neurons. In situ hybridization studies confirmed that astrocyte loss of S1P(1) was the key alteration in functionally affected mutants. Reductions in EAE clinical scores were paralleled by reductions in demyelination, axonal loss, and astrogliosis. Receptor rescue and pharmacological experiments supported the loss of S1P(1) on astrocytes through functional antagonism by FTY720-P as a primary FTY720 mechanism. These data identify nonimmunological CNS mechanisms of FTY720 efficacy and implicate S1P signaling pathways within the CNS as targets for multiple sclerosis therapies.


Asunto(s)
Astrocitos/citología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Regulación de la Expresión Génica , Esclerosis Múltiple/tratamiento farmacológico , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esfingosina/farmacología
2.
Glia ; 61(12): 2009-22, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115248

RESUMEN

Schwann cell (SC) migration is an important step preceding myelination and remyelination in the peripheral nervous system, and can be promoted by peptide factors like neuregulins. Here we present evidence that a lipid factor, lysophosphatidic acid (LPA), influences both SC migration and peripheral myelination through its cognate G protein-coupled receptor (GPCR) known as LPA1 . Ultrastructural analyses of peripheral nerves in mouse null-mutants for LPA1 showed delayed SC-to-axon segregation, polyaxonal myelination by single SCs, and thinner myelin sheaths. In primary cultures, LPA promoted SC migration through LPA1 , while analysis of conditioned media from purified dorsal root ganglia neurons using HPLC/MS supported the production of LPA by these neurons. The heterotrimeric G-alpha protein, Gαi , and the small GTPase, Rac1, were identified as important downstream signaling components of LPA1 . These results identify receptor mediated LPA signaling between neurons and SCs that promote SC migration and contribute to the normal development of peripheral nerves through effects on SC-axon segregation and myelination.


Asunto(s)
Axones/metabolismo , Movimiento Celular/fisiología , Lisofosfolípidos/farmacología , Vaina de Mielina/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Células de Schwann/metabolismo , Animales , Axones/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones , Vaina de Mielina/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Trends Mol Med ; 12(2): 65-75, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16406843

RESUMEN

The two lysophospholipids (LPs) lysophosphatidic acid and sphingosine 1-phosphate (S1P) regulate diverse biological processes. Over the past decade, it has become clear that medically relevant LP activities are mediated by specific G protein-coupled receptors, implicating them in the etiology of a growing number of disorders. A new class of LP agonists shows promise for drug therapy: the experimental drug FTY720 is phosphorylated in vivo to produce a potent S1P receptor agonist (FTY720-P) and is currently in Phase III clinical trials for kidney transplantation and Phase II for multiple sclerosis. Recent genetic and pharmacological studies on LP signaling in animal disease models have identified new areas in which interventions in LP signaling might provide novel therapeutic approaches for the treatment of human diseases.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Lisofosfolípidos/fisiología , Receptores del Ácido Lisofosfatídico/efectos de los fármacos , Receptores de Lisoesfingolípidos/efectos de los fármacos , Transducción de Señal , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/inmunología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Obesidad/tratamiento farmacológico , Obesidad/inmunología , Fosforilación , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores del Ácido Lisofosfatídico/agonistas , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Esfingosina/análogos & derivados , Esfingosina/fisiología , Inmunología del Trasplante
4.
J Biol Chem ; 283(12): 7470-9, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18198181

RESUMEN

Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/fisiología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/citología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Neuronas/citología , Receptores del Ácido Lisofosfatídico/genética , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA