Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(5): e14344, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615273

RESUMEN

PURPOSE: Radiotherapy (RT) treatment and treatment planning is a complex process prepared and delivered by a multidisciplinary team of specialists. Efficient communication and notification systems among different team members are therefore essential to ensure the safe, timely delivery of treatments to patients. METHOD: To address this issue, we developed and implemented automated notification systems and an electronic whiteboard to track every CT simulation, contouring task, the new-start schedule, and physician's appointments and tasks, and notify team members of overdue and missing tasks and appointments. The electronic whiteboard was developed to have a straightforward view of current patients' planning workflow and to help different team members coordinate with each other. The systems were implemented and have been used at our center to monitor the progress of treatment-planning tasks for over 2 years. RESULTS: The last-minute plans were relatively reduced by about 40% in 2023 compared to 2021 and 2022 with a p-value < 0.05. The overdue contouring tasks of more than 1 day decreased from 46.8% in 2019 and 33.6% in 2020 to 20%-26.4% in 2021-2023 with a p-value < 0.05 after the implementation of the notification system. The rate of plans with 1-3 day planning time decreased by 20.31%, 39.32%, and 24.08% with a p-value < 0.05 and the rate of plans with 1-3 day planning time due to the contouring task overdue more than 1 day decreased by 49.49%, 56.89%, and 46.52% with a p-value < 0.05 after the implementation. The rate of outstanding appointments that are overdue by more than 7 days decreased by more than 5% with a p-value < 0.05 following the implementation of the system. CONCLUSIONS: Our experience shows that this system requires minimal human intervention, improves the treatment planning workflow and process by reducing errors and delays in the treatment planning process, positively impacts on-time treatment plan completion, and reduces the need for compressed or rushed treatment planning timelines.


Asunto(s)
Neoplasias , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias/radioterapia , Radioterapia de Intensidad Modulada/métodos , Flujo de Trabajo , Tomografía Computarizada por Rayos X/métodos
2.
JAMA Oncol ; 10(5): 642-647, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546697

RESUMEN

Importance: Toxic effects of concurrent chemoradiotherapy (CRT) can cause treatment interruptions and hospitalizations, reducing treatment efficacy and increasing health care costs. Physical activity monitoring may enable early identification of patients at high risk for hospitalization who may benefit from proactive intervention. Objective: To develop and validate machine learning (ML) approaches based on daily step counts collected by wearable devices on prospective trials to predict hospitalizations during CRT. Design, Setting, and Participants: This study included patients with a variety of cancers enrolled from June 2015 to August 2018 on 3 prospective, single-institution trials of activity monitoring using wearable devices during CRT. Patients were followed up during and 1 month following CRT. Training and validation cohorts were generated temporally, stratifying for cancer diagnosis (70:30). Random forest, neural network, and elastic net-regularized logistic regression (EN) were trained to predict short-term hospitalization risk based on a combination of clinical characteristics and the preceding 2 weeks of activity data. To predict outcomes of activity data, models based only on activity-monitoring features and only on clinical features were trained and evaluated. Data analysis was completed from January 2022 to March 2023. Main Outcomes and Measures: Model performance was evaluated in terms of the receiver operating characteristic area under curve (ROC AUC) in the stratified temporal validation cohort. Results: Step counts from 214 patients (median [range] age, 61 [53-68] years; 113 [52.8%] male) were included. EN based on step counts and clinical features had high predictive ability (ROC AUC, 0.83; 95% CI, 0.66-0.92), outperforming random forest (ROC AUC, 0.76; 95% CI, 0.56-0.87; P = .02) and neural network (ROC AUC, 0.80; 95% CI, 0.71-0.88; P = .36). In an ablation study, the EN model based on only step counts demonstrated greater predictive ability than the EN model with step counts and clinical features (ROC AUC, 0.85; 95% CI, 0.70-0.93; P = .09). Both models outperformed the EN model trained on only clinical features (ROC AUC, 0.53; 95% CI, 0.31-0.66; P < .001). Conclusions and Relevance: This study developed and validated a ML model based on activity-monitoring data collected during prospective clinical trials. Patient-generated health data have the potential to advance predictive ability of ML approaches. The resulting model from this study will be evaluated in an upcoming multi-institutional, cooperative group randomized trial.


Asunto(s)
Quimioradioterapia , Hospitalización , Aprendizaje Automático , Neoplasias , Humanos , Masculino , Femenino , Quimioradioterapia/efectos adversos , Persona de Mediana Edad , Anciano , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Estudios Prospectivos , Ejercicio Físico
3.
Radiat Oncol ; 19(1): 69, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822385

RESUMEN

BACKGROUND: Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven autocontouring into clinical practice, three commercially available CT-based solutions were evaluated. MATERIALS AND METHODS: The following solutions were evaluated in this work: MIM-ProtégéAI+ (MIM), Radformation-AutoContour (RAD), and Siemens-DirectORGANS (SIE). Sixteen organs were identified that could be contoured by all solutions. For each organ, ten patients that had manually generated contours approved by the treating physician (AP) were identified, totaling forty-seven different patients. CT scans in the supine position were acquired using a Siemens-SOMATOMgo 64-slice helical scanner and used to generate autocontours. Physician scoring of contour accuracy was performed by at least three physicians using a five-point Likert scale. Dice similarity coefficient (DSC), Hausdorff distance (HD) and mean distance to agreement (MDA) were calculated comparing AI contours to "ground truth" AP contours. RESULTS: The average physician score ranged from 1.00, indicating that all physicians reviewed the contour as clinically acceptable with no modifications necessary, to 3.70, indicating changes are required and that the time taken to modify the structures would likely take as long or longer than manually generating the contour. When averaged across all sixteen structures, the AP contours had a physician score of 2.02, MIM 2.07, RAD 1.96 and SIE 1.99. DSC ranged from 0.37 to 0.98, with 41/48 (85.4%) contours having an average DSC ≥ 0.7. Average HD ranged from 2.9 to 43.3 mm. Average MDA ranged from 0.6 to 26.1 mm. CONCLUSIONS: The results of our comparison demonstrate that each vendor's AI contouring solution exhibited capabilities similar to those of manual contouring. There were a small number of cases where unusual anatomy led to poor scores with one or more of the solutions. The consistency and comparable performance of all three vendors' solutions suggest that radiation oncology centers can confidently choose any of the evaluated solutions based on individual preferences, resource availability, and compatibility with their existing clinical workflows. Although AI-based contouring may result in high-quality contours for the majority of patients, a minority of patients require manual contouring and more in-depth physician review.


Asunto(s)
Inteligencia Artificial , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Head Neck ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045885

RESUMEN

BACKGROUND: Delay in time to treatment initiation (TTI) is associated with worsened survival outcomes in laryngeal squamous cell carcinoma (LSCC). It is unclear whether this is due to tumor growth or an increased risk of metastatic disease. METHODS: This retrospective cohort study at one academic center included patients with LSCC who underwent radiotherapy/chemoradiotherapy between 2005 and 2017. We examined the association between tumor growth rate (TGR) and survival outcomes. RESULTS: Among 105 patients (mean age, 63.8 ± 11.1 years; 72% male), the threshold between "slow-growing" and "fast-growing" tumors was >0.036 mL/day (survival) and >0.082 mL/day (recurrence). Faster growth was associated with worse overall survival (OS) (hazard ratio, 1.97; 95% confidence interval [CI], 0.94-4.13) and increased recurrence (odds ratio, 9.10; 95% CI, 2.40-34.4). CONCLUSIONS: TGR >0.036 mL/day during TTI was associated with decreased OS, and >0.082 mL/day was associated with increased recurrence. Tumor measurement in patients experiencing delay may identify those who could benefit from escalated therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA