Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet A ; 164A(11): 2892-900, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25251875

RESUMEN

Mutations in ERCC6 are associated with growth failure, intellectual disability, neurological dysfunction and deterioration, premature aging, and photosensitivity. We describe siblings with biallelic ERCC6 mutations (NM_000124.2:c. [543+4delA];[2008C>T]) and brain hypomyelination, microcephaly, cognitive decline, and skill regression but without photosensitivity or progeria. DNA repair assays on cultured skin fibroblasts confirmed a defect of transcription-coupled nucleotide excision repair and increased ultraviolet light sensitivity. This report expands the disease spectrum associated with ERCC6 mutations.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades del Sistema Nervioso/genética , Empalme Alternativo , Biomarcadores/metabolismo , Niño , Preescolar , ADN Helicasas/metabolismo , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/metabolismo , Facies , Femenino , Expresión Génica , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Humanos , Intrones , Imagen por Resonancia Magnética , Masculino , Mutación , Enfermedades del Sistema Nervioso/diagnóstico , Linaje , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa , Hermanos
2.
Am J Med Genet A ; 158A(2): 391-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190277

RESUMEN

Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome (OMIM #109400) is a well-described rare autosomal dominant condition due to haploinsufficiency of PTCH1. With the availability of comparative genomic hybridization arrays, increasing numbers of individuals with microdeletions involving this locus are being identified. We present 10 previously unreported individuals with 9q22.3 deletions that include PTCH1. While 7 of the 10 patients (7 females, 3 males) did not meet strict clinical criteria for BCNS at the time of molecular diagnosis, almost all of the patients were too young to exhibit many of the diagnostic features. A number of the patients exhibited metopic craniosynostosis, severe obstructive hydrocephalus, and macrosomia, which are not typically observed in BCNS. All individuals older than a few months of age also had developmental delays and/or intellectual disability. Only facial features typical of BCNS, except in those with prominent midforeheads secondary to metopic craniosynostosis, were shared among the 10 patients. The deletions in these individuals ranged from 352 kb to 20.5 Mb in size, the largest spanning 9q21.33 through 9q31.2. There was significant overlap of the deleted segments among most of the patients. The smallest common regions shared among the deletions were identified in order to localize putative candidate genes that are potentially responsible for each of the non-BCNS features. These were a 929 kb region for metopic craniosynostosis, a 1.08 Mb region for obstructive hydrocephalus, and a 1.84 Mb region for macrosomia. Additional studies are needed to further characterize the candidate genes within these regions.


Asunto(s)
Síndrome del Nevo Basocelular/diagnóstico , Síndrome del Nevo Basocelular/genética , Síndrome del Nevo Basocelular/patología , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Receptores de Superficie Celular/genética , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/genética , Carcinoma Basocelular/patología , Niño , Preescolar , Hibridación Genómica Comparativa , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Femenino , Macrosomía Fetal/genética , Estudios de Asociación Genética , Haploinsuficiencia/genética , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/genética , Lactante , Recién Nacido , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Receptores Patched , Receptor Patched-1 , Patología Molecular
3.
Artículo en Inglés | MEDLINE | ID: mdl-35534222

RESUMEN

De novo variants are increasingly recognized as a common cause of early infantile epileptic encephalopathies. We present a 4-year-old male with epileptic encephalopathy characterized by seizures, autism spectrum disorder, and global developmental delay. Whole genome sequencing of the proband and his unaffected parents revealed a novel de novo missense variant in GRIA2 (c.1589A>T; p.Lys530Met; ENST00000264426.14). Variants in the GRIA2 gene were recently reported to cause an autosomal dominant neurodevelopmental disorder with language impairments and behavioral abnormalities (OMIM; MIM #618917), a condition characterized by intellectual disability and developmental delay in which seizures are a common feature. The de novo variant identified in our patient maps to the edge of a key ligand binding domain of the AMPA receptor and has not been previously reported in gnomAD or other public databases, making it novel. Our findings provided a long-sought diagnosis for this patient and support the link between GRIA2 and a dominant neurodevelopmental disorder.

4.
Dis Model Mech ; 14(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142127

RESUMEN

Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular and nervous systems, which may result in deformities, such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated N-ethyl-N-nitrosourea alleles in 21% of pedigrees. Our study provides proof of concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced transactivation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease.


Asunto(s)
Mutagénesis , Columna Vertebral/anomalías , Animales , Proteínas de Unión al Calcio/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Linaje , Índice de Severidad de la Enfermedad
5.
Am J Med Genet A ; 152A(7): 1608-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20578137

RESUMEN

Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron (SMN1) gene, affecting approximately 1 in 10,000 live births. The homozygous absence of SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. Treatment and prevention of SMA are complementary responses to the challenges presented by SMA. Even though a specific therapy for SMA is not currently available, a newborn screening test may allow the child to be enrolled in a clinical trial before irreversible neuronal loss occurs and enable patients to obtain more proactive treatments. Until an effective treatment is found to cure or arrest the progression of the disease, prevention of new cases through accurate diagnosis and carrier and prenatal diagnosis is of the utmost importance. The goal of population-based SMA carrier screening is to identify couples at risk for having a child with SMA, thus allowing carriers to make informed reproductive choices. During this study we performed two pilot projects addressing the clinical applicability of testing in the newborn period and carrier screening in the general population. We have demonstrated that an effective technology does exist for newborn screening of SMA. We also provide an estimate of the carrier frequency among individuals who accepted carrier screening, and report on patient's knowledge and attitudes toward SMA testing.


Asunto(s)
Heterocigoto , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Tamizaje Neonatal , Fluorescencia , Genotipo , Encuestas Epidemiológicas , Humanos , Recién Nacido , Proteína 1 para la Supervivencia de la Neurona Motora/genética
6.
Ecology ; 87(3): 759-68, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16602304

RESUMEN

The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in > 2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an increased appreciation of the multiple scales at which landscape components influence predator and parasite behavior.


Asunto(s)
Agricultura , Aves/fisiología , Ecosistema , Ambiente , Comportamiento de Nidificación , Animales , Conservación de los Recursos Naturales , Femenino , Masculino , Conducta Predatoria , Ríos , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA