Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675503

RESUMEN

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Asunto(s)
Población Negra/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Genómica , Femenino , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Uganda/epidemiología , Secuenciación Completa del Genoma
2.
Nature ; 617(7960): 335-343, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165241

RESUMEN

The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.


Asunto(s)
Centrómero , Cromosomas Humanos , Recombinación Genética , Humanos , Centrómero/genética , Cromosomas Humanos/genética , ADN Ribosómico/genética , Recombinación Genética/genética , Translocación Genética/genética , Citogenética , Telómero/genética
3.
Nature ; 621(7978): 344-354, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612512

RESUMEN

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.


Asunto(s)
Cromosomas Humanos Y , Genómica , Análisis de Secuencia de ADN , Humanos , Secuencia de Bases , Cromosomas Humanos Y/genética , ADN Satélite/genética , Variación Genética/genética , Genética de Población , Genómica/métodos , Genómica/normas , Heterocromatina/genética , Familia de Multigenes/genética , Estándares de Referencia , Duplicaciones Segmentarias en el Genoma/genética , Análisis de Secuencia de ADN/normas , Secuencias Repetidas en Tándem/genética , Telómero/genética
4.
Nature ; 604(7906): 437-446, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444317

RESUMEN

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene-disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine.


Asunto(s)
Genoma Humano , Genómica , Genoma Humano/genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
5.
Nat Methods ; 20(2): 239-247, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646895

RESUMEN

Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses population-level genome reference structures, typically consisting of a sequence graph, to mitigate reference bias and facilitate analyses that were challenging with previous reference-based methods. In this work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscriptome: a population-level transcriptomic reference. Our toolchain, which consists of additions to the VG toolkit and a standalone tool, RPVG, can construct spliced pangenome graphs, map RNA sequencing data to these graphs, and perform haplotype-aware expression quantification of transcripts in a pantranscriptome. We show that this workflow improves accuracy over state-of-the-art RNA sequencing mapping methods, and that it can efficiently quantify haplotype-specific transcript expression without needing to characterize the haplotypes of a sample beforehand.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Haplotipos , Metagenómica , Transcriptoma
6.
Bioinformatics ; 40(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960860

RESUMEN

MOTIVATION: The increasing availability of complete genomes demands for models to study genomic variability within entire populations. Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to see them. For visualization, we need a human-readable graph layout: a graph embedding in low (e.g. two) dimensional depictions. Due to a pangenome graph's potential excessive size, this is a significant challenge. RESULTS: In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of nodes. This avoids the quadratic cost seen in previous versions of graph drawing by SGD. We show that our implementation efficiently computes the low-dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features. AVAILABILITY AND IMPLEMENTATION: We integrated PG-SGD in ODGI which is released as free software under the MIT open source license. Source code is available at https://github.com/pangenome/odgi.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Genómica/métodos , Gráficos por Computador , Genoma
7.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448683

RESUMEN

MOTIVATION: Pangenome variation graphs model the mutual alignment of collections of DNA sequences. A set of pairwise alignments implies a variation graph, but there are no scalable methods to generate such a graph from these alignments. Existing related approaches depend on a single reference, a specific ordering of genomes or a de Bruijn model based on a fixed k-mer length. A scalable, self-contained method to build pangenome graphs without such limitations would be a key step in pangenome construction and manipulation pipelines. RESULTS: We design the seqwish algorithm, which builds a variation graph from a set of sequences and alignments between them. We first transform the alignment set into an implicit interval tree. To build up the variation graph, we query this tree-based representation of the alignments to reduce transitive matches into single DNA segments in a sequence graph. By recording the mapping from input sequence to output graph, we can trace the original paths through this graph, yielding a pangenome variation graph. We present an implementation that operates in external memory, using disk-backed data structures and lock-free parallel methods to drive the core graph induction step. We demonstrate that our method scales to very large graph induction problems by applying it to build pangenome graphs for several species. AVAILABILITY AND IMPLEMENTATION: seqwish is published as free software under the MIT open source license. Source code and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed via Bioconda https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix https://github.com/ekg/guix-genomics/blob/master/seqwish.scm.


Asunto(s)
Algoritmos , Programas Informáticos , Análisis de Secuencia de ADN , Genoma , Documentación
8.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749013

RESUMEN

MOTIVATION: Pairwise sequence alignment remains a fundamental problem in computational biology and bioinformatics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic programming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in O(ns) time, where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA's O(s2) memory requirements become computationally impractical for genome-scale alignments, leading to a need for further improvement. RESULTS: In this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of computing optimal alignments in O(s) memory while retaining WFA's time complexity of O(ns). As a result, this work improves the lowest known memory bound O(n) to compute gap-affine alignments. In practice, our implementation never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long while maintaining competitive execution times. AVAILABILITY AND IMPLEMENTATION: All code is publicly available at https://github.com/smarco/BiWFA-paper. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Genómica , Biología Computacional , Genoma , Análisis de Secuencia de ADN , Programas Informáticos
9.
Bioinformatics ; 39(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37603771

RESUMEN

MOTIVATION: The Jaccard similarity on k-mer sets has shown to be a convenient proxy for sequence identity. By avoiding expensive base-level alignments and comparing reduced sequence representations, tools such as MashMap can scale to massive numbers of pairwise comparisons while still providing useful similarity estimates. However, due to their reliance on minimizer winnowing, previous versions of MashMap were shown to be biased and inconsistent estimators of Jaccard similarity. This directly impacts downstream tools that rely on the accuracy of these estimates. RESULTS: To address this, we propose the minmer winnowing scheme, which generalizes the minimizer scheme by use of a rolling minhash with multiple sampled k-mers per window. We show both theoretically and empirically that minmers yield an unbiased estimator of local Jaccard similarity, and we implement this scheme in an updated version of MashMap. The minmer-based implementation is over 10 times faster than the minimizer-based version under the default ANI threshold, making it well-suited for large-scale comparative genomics applications. AVAILABILITY AND IMPLEMENTATION: MashMap3 is available at https://github.com/marbl/MashMap.


Asunto(s)
Biología Computacional , Genómica
10.
Annu Rev Genomics Hum Genet ; 21: 139-162, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32453966

RESUMEN

Low-cost whole-genome assembly has enabled the collection of haplotype-resolved pangenomes for numerous organisms. In turn, this technological change is encouraging the development of methods that can precisely address the sequence and variation described in large collections of related genomes. These approaches often use graphical models of the pangenome to support algorithms for sequence alignment, visualization, functional genomics, and association studies. The additional information provided to these methods by the pangenome allows them to achieve superior performance on a variety of bioinformatic tasks, including read alignment, variant calling, and genotyping. Pangenome graphs stand to become a ubiquitous tool in genomics. Although it is unclear whether they will replace linearreference genomes, their ability to harmoniously relate multiple sequence and coordinate systems will make them useful irrespective of which pangenomic models become most common in the future.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Gráficos por Computador , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
11.
Bioinformatics ; 38(13): 3319-3326, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35552372

RESUMEN

MOTIVATION: Pangenome graphs provide a complete representation of the mutual alignment of collections of genomes. These models offer the opportunity to study the entire genomic diversity of a population, including structurally complex regions. Nevertheless, analyzing hundreds of gigabase-scale genomes using pangenome graphs is difficult as it is not well-supported by existing tools. Hence, fast and versatile software is required to ask advanced questions to such data in an efficient way. RESULTS: We wrote Optimized Dynamic Genome/Graph Implementation (ODGI), a novel suite of tools that implements scalable algorithms and has an efficient in-memory representation of DNA pangenome graphs in the form of variation graphs. ODGI supports pre-built graphs in the Graphical Fragment Assembly format. ODGI includes tools for detecting complex regions, extracting pangenomic loci, removing artifacts, exploratory analysis, manipulation, validation and visualization. Its fast parallel execution facilitates routine pangenomic tasks, as well as pipelines that can quickly answer complex biological questions of gigabase-scale pangenome graphs. AVAILABILITY AND IMPLEMENTATION: ODGI is published as free software under the MIT open source license. Source code can be downloaded from https://github.com/pangenome/odgi and documentation is available at https://odgi.readthedocs.io. ODGI can be installed via Bioconda https://bioconda.github.io/recipes/odgi/README.html or GNU Guix https://github.com/pangenome/odgi/blob/master/guix.scm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Genómica , Algoritmos , Documentación
12.
PLoS Comput Biol ; 18(5): e1009123, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639788

RESUMEN

Since its introduction in 2011 the variant call format (VCF) has been widely adopted for processing DNA and RNA variants in practically all population studies-as well as in somatic and germline mutation studies. The VCF format can represent single nucleotide variants, multi-nucleotide variants, insertions and deletions, and simple structural variants called and anchored against a reference genome. Here we present a spectrum of over 125 useful, complimentary free and open source software tools and libraries, we wrote and made available through the multiple vcflib, bio-vcf, cyvcf2, hts-nim and slivar projects. These tools are applied for comparison, filtering, normalisation, smoothing and annotation of VCF, as well as output of statistics, visualisation, and transformations of files variants. These tools run everyday in critical biomedical pipelines and countless shell scripts. Our tools are part of the wider bioinformatics ecosystem and we highlight best practices. We shortly discuss the design of VCF, lessons learnt, and how we can address more complex variation through pangenome graph formats, variation that can not easily be represented by the VCF format.


Asunto(s)
Ecosistema , Variación Genética , Biología Computacional , Variación Genética/genética , Nucleótidos , Programas Informáticos
13.
Bioinformatics ; 36(21): 5139-5144, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33040146

RESUMEN

MOTIVATION: Pangenomics is a growing field within computational genomics. Many pangenomic analyses use bidirected sequence graphs as their core data model. However, implementing and correctly using this data model can be difficult, and the scale of pangenomic datasets can be challenging to work at. These challenges have impeded progress in this field. RESULTS: Here, we present a stack of two C++ libraries, libbdsg and libhandlegraph, which use a simple, field-proven interface, designed to expose elementary features of these graphs while preventing common graph manipulation mistakes. The libraries also provide a Python binding. Using a diverse collection of pangenome graphs, we demonstrate that these tools allow for efficient construction and manipulation of large genome graphs with dense variation. For instance, the speed and memory usage are up to an order of magnitude better than the prior graph implementation in the VG toolkit, which has now transitioned to using libbdsg's implementations. AVAILABILITY AND IMPLEMENTATION: libhandlegraph and libbdsg are available under an MIT License from https://github.com/vgteam/libhandlegraph and https://github.com/vgteam/libbdsg.


Asunto(s)
Bibliotecas , Programas Informáticos , Genoma , Genómica
14.
PLoS Comput Biol ; 17(9): e1009444, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570769

RESUMEN

Transcription factors (TFs) are proteins that promote or reduce the expression of genes by binding short genomic DNA sequences known as transcription factor binding sites (TFBS). While several tools have been developed to scan for potential occurrences of TFBS in linear DNA sequences or reference genomes, no tool exists to find them in pangenome variation graphs (VGs). VGs are sequence-labelled graphs that can efficiently encode collections of genomes and their variants in a single, compact data structure. Because VGs can losslessly compress large pangenomes, TFBS scanning in VGs can efficiently capture how genomic variation affects the potential binding landscape of TFs in a population of individuals. Here we present GRAFIMO (GRAph-based Finding of Individual Motif Occurrences), a command-line tool for the scanning of known TF DNA motifs represented as Position Weight Matrices (PWMs) in VGs. GRAFIMO extends the standard PWM scanning procedure by considering variations and alternative haplotypes encoded in a VG. Using GRAFIMO on a VG based on individuals from the 1000 Genomes project we recover several potential binding sites that are enhanced, weakened or missed when scanning only the reference genome, and which could constitute individual-specific binding events. GRAFIMO is available as an open-source tool, under the MIT license, at https://github.com/pinellolab/GRAFIMO and https://github.com/InfOmics/GRAFIMO.


Asunto(s)
Variación Genética , Motivos de Nucleótidos , Programas Informáticos , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Biología Computacional , Gráficos por Computador , Genoma Humano , Genómica , Haplotipos , Humanos , Unión Proteica/genética
15.
Bioinformatics ; 36(2): 400-407, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31406990

RESUMEN

MOTIVATION: The variation graph toolkit (VG) represents genetic variation as a graph. Although each path in the graph is a potential haplotype, most paths are non-biological, unlikely recombinations of true haplotypes. RESULTS: We augment the VG model with haplotype information to identify which paths are more likely to exist in nature. For this purpose, we develop a scalable implementation of the graph extension of the positional Burrows-Wheeler transform. We demonstrate the scalability of the new implementation by building a whole-genome index of the 5008 haplotypes of the 1000 Genomes Project, and an index of all 108 070 Trans-Omics for Precision Medicine Freeze 5 chromosome 17 haplotypes. We also develop an algorithm for simplifying variation graphs for k-mer indexing without losing any k-mers in the haplotypes. AVAILABILITY AND IMPLEMENTATION: Our software is available at https://github.com/vgteam/vg, https://github.com/jltsiren/gbwt and https://github.com/jltsiren/gcsa2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Haplotipos , Algoritmos , Genoma , Análisis de Secuencia de ADN , Programas Informáticos
16.
Nature ; 526(7571): 68-74, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432245

RESUMEN

The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.


Asunto(s)
Variación Genética/genética , Genética de Población/normas , Genoma Humano/genética , Genómica/normas , Internacionalidad , Conjuntos de Datos como Asunto , Demografía , Susceptibilidad a Enfermedades , Exoma/genética , Genética Médica , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL/genética , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Enfermedades Raras/genética , Estándares de Referencia , Análisis de Secuencia de ADN
17.
Nature ; 526(7571): 75-81, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432246

RESUMEN

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Mapeo Físico de Cromosoma , Secuencia de Aminoácidos , Predisposición Genética a la Enfermedad , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Haplotipos/genética , Homocigoto , Humanos , Datos de Secuencia Molecular , Tasa de Mutación , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética
18.
Genome Res ; 27(5): 665-676, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28360232

RESUMEN

The human reference genome is part of the foundation of modern human biology and a monumental scientific achievement. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human genomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned from these cohorts, many using ideas implicitly or explicitly borrowed from graph-based models. Here, we survey various projects underway to build and apply these graph-based structures-which we collectively refer to as genome graphs-and discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected to produce.


Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Estudio de Asociación del Genoma Completo/normas , Genómica/normas , Humanos , Polimorfismo Genético
19.
BMC Bioinformatics ; 20(1): 389, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299914

RESUMEN

BACKGROUND: Human papillomavirus (HPV) is a common sexually transmitted infection associated with cervical cancer that frequently occurs as a coinfection of types and subtypes. Highly similar sublineages that show over 100-fold differences in cancer risk are not distinguishable in coinfections with current typing methods. RESULTS: We describe an efficient set of computational tools, rkmh, for analyzing complex mixed infections of related viruses based on sequence data. rkmh makes extensive use of MinHash similarity measures, and includes utilities for removing host DNA and classifying reads by type, lineage, and sublineage. We show that rkmh is capable of assigning reads to their HPV type as well as HPV16 lineage and sublineages. CONCLUSIONS: Accurate read classification enables estimates of percent composition when there are multiple infecting lineages or sublineages. While we demonstrate rkmh for HPV with multiple sequencing technologies, it is also applicable to other mixtures of related sequences.


Asunto(s)
Coinfección/diagnóstico , Coinfección/virología , Biología Computacional/métodos , Papillomavirus Humano 16/fisiología , Programas Informáticos , ADN Viral/genética , Papillomavirus Humano 16/clasificación , Humanos , Infecciones por Papillomavirus/virología , Filogenia , Análisis de Secuencia de ADN , Factores de Tiempo
20.
Bioinformatics ; 34(13): i105-i114, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949989

RESUMEN

Motivation: Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is important for revealing the full extent of structural variation and its role in health and disease. Current assembly approaches often collapse the two sequences into one haploid consensus sequence and, therefore, fail to capture the diploid nature of the organism under study. Thus, building an assembler capable of producing accurate and complete diploid assemblies, while being resource-efficient with respect to sequencing costs, is a key challenge to be addressed by the bioinformatics community. Results: We present a novel graph-based approach to diploid assembly, which combines accurate Illumina data and long-read Pacific Biosciences (PacBio) data. We demonstrate the effectiveness of our method on a pseudo-diploid yeast genome and show that we require as little as 50× coverage Illumina data and 10× PacBio data to generate accurate and complete assemblies. Additionally, we show that our approach has the ability to detect and phase structural variants. Availability and implementation: https://github.com/whatshap/whatshap. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Diploidia , Genoma Fúngico , Análisis de Secuencia de ADN/métodos , Visualización de Datos , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA