Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(23): 6624-39, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26362255

RESUMEN

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.


Asunto(s)
Colágeno Tipo VI/metabolismo , Desarrollo de Músculos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Colágeno Tipo VI/genética , Expresión Génica , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
2.
J Neuromuscul Dis ; 10(1): 125-133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373293

RESUMEN

We report three siblings from a non-consanguineous family presenting with contractural limb-girdle phenotype with intrafamilial variability. Muscle MRI showed posterior thigh and quadriceps involvement with a sandwich-like sign. Whole-exome sequencing identified two compound heterozygous missense TTN variants and one heterozygous LAMA2 variant. Brain MRI performed because of concentration difficulties in one of the siblings evidenced white-matter abnormalities, subsequently found in the others. The genetic analysis was re-oriented, revealing a novel pathogenic intronic LAMA2 variant which confirmed the LAMA2-RD diagnosis. This work highlights the importance of a thorough clinical phenotyping and the importance of brain imaging, in order to orientate and interpret the genetic analysis.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Distrofias Musculares/diagnóstico por imagen , Distrofias Musculares/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Pruebas Genéticas , Neuroimagen
3.
Ann Neurol ; 68(4): 511-20, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20976770

RESUMEN

OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations. METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation). INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.


Asunto(s)
Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Enfermedades Musculares , Mutación/genética , Estadística como Asunto , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Europa (Continente) , Femenino , Fibroblastos/metabolismo , Pruebas Genéticas/métodos , Glicina/genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Fenotipo , Adulto Joven
4.
Clin Case Rep ; 9(9): e04128, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34484741

RESUMEN

COL1-related overlap disorder is a condition, which is not yet considered as part of the 2017 EDS classification. However, it should be investigated as an alternative diagnosis for any patient with hypermobile EDS. This could allow providing appropriate genetic counseling.

5.
J Neuromuscul Dis ; 8(2): 273-285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33337382

RESUMEN

A family of five male siblings (three survivors at 48, 53 and 58 years old; two deceased at 8 months old and 2.5 years old) demonstrating significant phenotypic variability ranging from intermediate to the myosclerotic like Bethlem myopathy is presented. Whole-exome sequencing (WES) identified a new homozygous missense mutation chr21:47402679 T > C in the canonical splice donor site of the second intron (c.227 + 2T>C) in the COL6A1 gene. mRNA analysis confirmed skipping of exon 2 encoding 925 amino-acids in 94-95% of resulting transcripts. Three sibs presented with intermediate phenotype of collagen VI-related dystrophies (48, 53 and 2.5 years old) while the fourth sibling (58 years old) was classified as Bethlem myopathy with spine rigidity. The two older siblings with the moderate progressive phenotype (48 and 53 years old) lost their ability to maintain a vertical posture caused by pronounced contractures of large joints, but continued to ambulate throughout life on fully bent legs without auxiliary means of support. Immunofluorescence analysis of dermal fibroblasts demonstrated that no type VI collagen was secreted in any of the siblings' cells, regardless of clinical manifestations severity while fibroblast proliferation and colony formation ability was decreased. The detailed genetic and long term clinical data contribute to broadening the genotypic and phenotypic spectrum of COL6A1 related disease.


Asunto(s)
Colágeno Tipo VI , Contractura/genética , Distrofias Musculares/congénito , Variación Biológica Poblacional , Exones , Genotipo , Humanos , Lactante , Intrones , Masculino , Persona de Mediana Edad , Distrofias Musculares/genética , Mutación , Mutación Missense , Fenotipo
6.
J Neuromuscul Dis ; 8(4): 633-645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749658

RESUMEN

BACKGROUND: Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging. OBJECTIVE: To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.7447A>G (p.Lys2483Glu). METHODS: We report the clinical and molecular findings in 16 patients: 12 patients carrying this variant in compound heterozygosity with another COL6A3 variant, and four homozygous patients. RESULTS: Patients carrying this variant in compound heterozygosity with a truncating COL6A3 variant exhibit a phenotype consistent with COL6-related myopathies (COL6-RM), with joint contractures, proximal weakness and skin abnormalities. All remain ambulant in adulthood and only three have mild respiratory involvement. Most show typical muscle MRI findings. In five patients, reduced collagen VI secretion was observed in skin fibroblasts cultures. All tested parents were unaffected heterozygous carriers. Conversely, two out of four homozygous patients did not present with the classical COL6-RM clinical and imaging findings. Collagen VI immunolabelling on cultured fibroblasts revealed rather normal secretion in one and reduced secretion in another. Muscle biopsy from one homozygous patient showed myofibrillar disorganization and rimmed vacuoles. CONCLUSIONS: In light of our results, we postulate that the COL6A3 variant c.7447A>G may act as a modulator of the clinical phenotype. Thus, in patients with a typical COL6-RM phenotype, a second variant must be thoroughly searched for, while for patients with atypical phenotypes further investigations should be conducted to exclude alternative causes. This works expands the clinical and molecular spectrum of COLVI-related myopathies.


Asunto(s)
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Procolágeno/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Enfermedades Musculares/genética , Mutación , Fenotipo , Adulto Joven
7.
BMC Dev Biol ; 9: 46, 2009 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-19698141

RESUMEN

BACKGROUND: In humans, mutations in the SEPN1 gene, encoding selenoprotein N (SelN), are involved in early onset recessive neuromuscular disorders, referred to as SEPN1-related-myopathies. The mechanisms behind these pathologies are poorly understood since the function of SelN remains elusive. However, previous results obtained in humans and more recently in zebrafish pointed to a potential role for SelN during embryogenesis. Using qRT-PCR, Western blot and whole mount in situ hybridization, we characterized in detail the spatio-temporal expression pattern of the murine Sepn1 gene during development, focusing particularly on skeletal muscles. RESULTS: In whole embryos, Sepn1 transcripts were detected as early as E5.5, with expression levels peaking at E12.5, and then strongly decreasing until birth. In isolated tissues, only mild transcriptional variations were observed during development, whereas a striking reduction of the protein expression was detected during the perinatal period. Furthermore, we demonstrated that Sepn1 is expressed early in somites and restricted to the myotome, the sub-ectodermal mesenchyme and the dorsal root ganglia at mid-gestation stages. Interestingly, Sepn1 deficiency did not alter somitogenesis in embryos, suggesting that SelN is dispensable for these processes in mouse. CONCLUSION: We characterized for the first time the expression pattern of Sepn1 during mammalian embryogenesis and we demonstrated that its differential expression is most likely dependent on major post-transcriptional regulations. Overall, our data strongly suggest a potential role for selenoprotein N from mid-gestation stages to the perinatal period. Interestingly, its specific expression pattern could be related to the current hypothesis that selenoprotein N may regulate the activity of the ryanodine receptors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/metabolismo , Músculo Esquelético/embriología , Selenoproteínas/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Humanos , Ratones , Proteínas Musculares/genética , Mioblastos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Selenoproteínas/genética , Pez Cebra/embriología
8.
JCI Insight ; 4(6)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30895940

RESUMEN

The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.


Asunto(s)
Colágeno Tipo VI/genética , Predisposición Genética a la Enfermedad/genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Empalme del ARN , Secuencia de Bases , Sistemas CRISPR-Cas , Análisis Mutacional de ADN , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Terapia Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones/genética , Mutación , Sitios de Empalme de ARN , ARN Mensajero/metabolismo , Piel/patología
9.
J Neuromuscul Dis ; 3(2): 267-274, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27854213

RESUMEN

The classical phenotypes of collagen VI-associated myopathies are well described. Little is known, however, about the progression of patients at the mildest end of the clinical spectrum. In this report, we describe the clinical findings and the results of MRI, muscle biopsy, collagen VI expression in cultured skin fibroblasts and genetic tests of a series of patients with Bethlem myopathy. Our series highlights the existence of mild presentations of this disorder that progresses only slightly and can easily be overlooked. Analysis of the genetic studies suggests that missense mutations can be associated to a milder clinical presentation. Muscle MRI is extremely useful as it shows a pathognomonic pattern in most patients, especially those with some degree of muscle weakness.


Asunto(s)
Contractura/fisiopatología , Distrofias Musculares/congénito , Adulto , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Contractura/diagnóstico por imagen , Contractura/genética , Contractura/patología , Progresión de la Enfermedad , Femenino , Fibroblastos/metabolismo , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofias Musculares/diagnóstico por imagen , Distrofias Musculares/genética , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Mutación Missense , Fenotipo , Índice de Severidad de la Enfermedad , Adulto Joven
10.
Neuromuscul Disord ; 24(11): 993-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25070542

RESUMEN

We report on a 5-year-old girl who presented with an association of symptoms reminiscent of an Ullrich-like congenital muscular dystrophy including congenital hypotonia, proximal joint contractures, hyperlaxity of distal joints, normal cognitive development, and kyphoscoliosis. There was an excess of neuromuscular spindles on the skeletal muscle biopsy. This very peculiar feature on muscle biopsy has been reported only in patients with mutations in the HRAS gene. Sequence analysis of the subject's HRAS gene from blood leukocytes and skeletal muscle revealed a previously described heterozygous missense mutation (c.187G>A, p. Glu63Lys). The present report thus extends the differential diagnosis of congenital muscular dystrophy with major "retractile" phenotypes and adds congenital muscular dystrophy to the clinical spectrum of HRAS-related disorders.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Husos Musculares/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación/genética , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Imagen por Resonancia Magnética
11.
Iran J Child Neurol ; 7(3): 15-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24665301

RESUMEN

OBJECTIVE: Ullrich congenital muscular dystrophy (UCMD) corresponds to the severe end of the clinical spectrum of neuromuscular disorders caused by mutations in the genes encoding collagen VI (COL VI). We studied four unrelated families with six affected children that had typical UCMD with dominant and recessive inheritance. MATERIALS & METHODS: Four unrelated Iranian families with six affected children with typical UCMD were analyzed for COLVI secretion in skin fibroblast culture and the secretion of COLVI in skin fibroblast culture using quantitative RT-PCR (Q-RT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: COL VI secretion was altered in all studied fibroblast cultures. Two affected sibs carried a homozygous nonsense mutation in exon 12 of COL6A2, while another patient had a large heterozygous deletion in exon 5-8 of COL6A2. The two other affected sibs had homozygote mutation in exon 24 of COL6A2, and the last one was homozygote in COL6A1. CONCLUSION: In this study, we found out variability in clinical findings and genetic inheritance among UCMD patients, so that the patient with complete absence of COLVI was severely affected and had a large heterozygous deletion in COL6A2. In contrast, the patients with homozygous deletion had mild to moderate decrease in the secretion of COL VI and were mildly to moderately affected.

12.
Neuromuscul Disord ; 23(8): 664-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23768946

RESUMEN

Complete deficiency of the extracellular matrix glycoprotein tenascin-X (TNX) leads to recessive forms of Ehlers-Danlos syndrome, clinically characterized by hyperextensible skin, easy bruising and joint hypermobility. Clinical and pathological studies, immunoassay, and molecular analyses were combined to study a patient suffering from progressive muscle weakness. Clinical features included axial and proximal limb muscle weakness, subclinical heart involvement, minimal skin hyperextensibility, no joint abnormalities, and a history of easy bruising. Skeletal muscle biopsy disclosed striking muscle consistency and the abnormal presence of myotendinous junctions in the muscle belly. TNX immunostaining was markedly reduced in muscle and skin, and serum TNX levels were undetectable. Compound heterozygous mutations were identified: a previously reported 30kb deletion and a non-synonymous novel missense mutation in the TNXB gene. This study identifies a TNX-deficient patient presenting with a primary muscle disorder, thus expanding the phenotypic spectrum of TNX-related abnormalities. Biopsy findings provide evidence that TNX deficiency leads to muscle softness and to mislocalization of myotendinous junctions.


Asunto(s)
Enfermedades Musculares/genética , Mutación/genética , Tenascina/genética , Adulto , Análisis Mutacional de ADN , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Tenascina/metabolismo , Tomografía Computarizada por Rayos X
13.
J Gene Med ; 10(2): 217-24, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18074402

RESUMEN

BACKGROUND: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. METHODS: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. RESULTS: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. CONCLUSIONS: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.


Asunto(s)
Codón sin Sentido/genética , Gentamicinas/farmacología , Laminina/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Estabilidad del ARN/efectos de los fármacos , Aminoácidos Diaminos/farmacología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Miosinas/metabolismo , Células 3T3 NIH , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Ann Neurol ; 59(1): 190-5, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16278855

RESUMEN

We have identified highly similar heterozygous COL6A1 genomic deletions, spanning from intron 8 to exon 13 or intron 13, in two patients with Ullrich congenital muscular dystrophy and the milder Bethlem myopathy. The 5' breakpoints of both deletions are located within a minisatellite in intron 8. The mutations cause in-frame deletions of 66 and 84 amino acids in the amino terminus of the triple-helical domain, leading to intracellular accumulation of mutant polypeptides and reduced extracellular collagen VI microfibrils. Our studies identify a deletion-prone region in COL6A1 and suggest that similar mutations can lead to congenital muscle disorders of different clinical severity.


Asunto(s)
Colágeno Tipo VI/genética , Eliminación de Gen , Enfermedades Musculares/genética , Distrofias Musculares/genética , Mutación , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Niño , Preescolar , Análisis Mutacional de ADN , Exones , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Lactante , Intrones , Masculino , Datos de Secuencia Molecular
15.
EMBO Rep ; 7(4): 450-4, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16498447

RESUMEN

Mutations in the SEPN1 gene encoding the selenoprotein N (SelN) have been described in different congenital myopathies. Here, we report the first mutation in the selenocysteine insertion sequence (SECIS) of SelN messenger RNA, a hairpin structure located in the 3' untranslated region, in a patient presenting a classical although mild form of rigid spine muscular dystrophy. We detected a significant reduction in both mRNA and protein levels in the patient's skin fibroblasts. The SECIS element is crucial for the insertion of selenocysteine at the reprogrammed UGA codon by recruiting the SECIS-binding protein 2 (SBP2), and we demonstrated that this mutation abolishes SBP2 binding to SECIS in vitro, thereby preventing co-translational incorporation of selenocysteine and SelN synthesis. The identification of this mutation affecting a conserved base in the SECIS functional motif thereby reveals the structural basis for a novel pathological mechanism leading to SEPN1-related myopathy.


Asunto(s)
Regiones no Traducidas 3'/genética , Homocigoto , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación Puntual/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Secuencia de Bases , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Distrofias Musculares/metabolismo , Linaje , Unión Proteica , Proteínas de Unión al ARN/metabolismo
16.
Ann Neurol ; 58(3): 400-10, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16130093

RESUMEN

In this study, we characterized five Ullrich scleroatonic muscular dystrophy patients (two Italians, one Belgian, and two Turks) with a clinical phenotype showing different degrees of severity, all carrying mutations localized in COL6A1. We sequenced the three entire COL6 complementary DNA. Three of five patients have recessive mutations: two patients (P1and P3) have homozygous single-nucleotide deletions, one in exon 9 and one in exon 22; one patient (P2) has a homozygous single-nucleotide substitution leading to a premature termination codon in exon 31. The nonsense mutation of P2 also causes a partial skipping of exon 31 with the formation of a premature termination codon in exon 32 in 15% of the total COL6A1 messenger RNA. The remaining two patients carry a heterozygous glycine substitution in exons 9 and 10 inside the triple-helix region; both are dominant mutations because the missense mutations are absent in the DNA of their respective parents. As for the three homozygous recessive mutations, the apparently healthy consanguineous parents all carry a heterozygous mutated allele. Here, for the first time, we report a genotype-phenotype correlation demonstrating that heterozygous glycine substitutions in the triple-helix domain of COL6A1 are dominant and responsible for a milder Ullrich scleroatonic muscular dystrophy phenotype, and that recessive mutations in COL6A1 correlate with more severe clinical and biochemical Ullrich scleroatonic muscular dystrophy phenotypes.


Asunto(s)
Colágeno Tipo VI/genética , Enfermedades del Tejido Conjuntivo/genética , Distrofias Musculares/genética , Mutación , Fenotipo , Adolescente , Northern Blotting , Western Blotting/métodos , Niño , Preescolar , Colágeno Tipo VI/metabolismo , Enfermedades del Tejido Conjuntivo/metabolismo , Enfermedades del Tejido Conjuntivo/patología , Citoesqueleto/ultraestructura , Análisis Mutacional de ADN , ADN Complementario , Exones , Femenino , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Genes Recesivos , Glicina/genética , Humanos , Masculino , Microscopía Inmunoelectrónica/métodos , Peso Molecular , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA