Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 21(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976236

RESUMEN

Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times.


Asunto(s)
Materiales Biocompatibles , Fibrina , Humanos , Sefarosa/química , Fibrina/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Hidrogeles/química , Andamios del Tejido/química
2.
J Periodontal Res ; 56(6): 1116-1131, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34510438

RESUMEN

OBJECTIVE: The aim of this study was to generate novel models of bioartificial human oral mucosa with increased vascularization potential for future use as an advanced therapies medicinal product, by using different vascular and mesenchymal stem cell sources. BACKGROUND: Oral mucosa substitutes could contribute to the clinical treatment of complex diseases affecting the oral cavity. Although several models of artificial oral mucosa have been described, biointegration is a major issue that could be favored by the generation of novel substitutes with increased vascularization potential once grafted in vivo. METHODS: Three types of mesenchymal stem cells (MSCs) were obtained from adipose tissue, bone marrow, and dental pulp, and their in vitro potential was evaluated by inducing differentiation to the endothelial lineage using conditioning media. Then, 3D models of human artificial oral mucosa were generated using biocompatible fibrin-agarose biomaterials combined with human oral mucosa fibroblasts and each type of MSC before and after induction to the endothelial lineage, using human umbilical vein endothelial cells (HUVEC) as controls. The vascularization potential of each oral mucosa substitute was assessed in vitro and in vivo in nude mice. RESULTS: In vitro induction of MSCs kept in culture was able to increase the expression of VEGF, CD31, and vWF endothelial markers, especially in bone marrow and dental pulp-MSCs, and numerous proteins with a role in vasculogenesis become overexpressed. Then, in vivo grafting resulted in a significant increase in blood vessels formation at the interface area between the graft and the host tissues, with significantly positive expression of VEGF, CD31, vWF, and CD34 as compared to negative controls, especially when pre-differentiated MSCs derived from bone marrow and dental pulp were used. In addition, a significantly higher number of cells committed to the endothelial lineage expressing the same endothelial markers were found within the bioartificial tissue. CONCLUSION: Our results suggest that the use of pre-differentiated MSCs could contribute to a rapid generation of a vascular network that may favor in vivo biointegration of bioengineered human oral mucosa substitutes.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Desnudos , Mucosa Bucal/cirugía , Neovascularización Fisiológica
3.
J Nanobiotechnology ; 18(1): 174, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228673

RESUMEN

BACKGROUND: Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS: Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS: These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.


Asunto(s)
Antibacterianos , Lípidos/química , Nanoestructuras , Piel Artificial , Ingeniería de Tejidos/métodos , Amicacina/química , Amicacina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colistina/análogos & derivados , Colistina/química , Colistina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Fibroblastos/citología , Humanos , Nanoestructuras/química , Nanoestructuras/toxicidad
4.
BMC Med Educ ; 18(1): 128, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879964

RESUMEN

BACKGROUND: The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. METHODS: A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. RESULTS: The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. CONCLUSIONS: Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.


Asunto(s)
Educación Profesional , Aprendizaje , Estudiantes del Área de la Salud/psicología , Adulto , Análisis de Varianza , Femenino , Humanidades/educación , Humanos , Masculino , Competencia Profesional , Reproducibilidad de los Resultados , Factores Sexuales , Ciencias Sociales/educación , España , Estudiantes/psicología , Encuestas y Cuestionarios
5.
Histochem Cell Biol ; 147(1): 83-95, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27586854

RESUMEN

The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.


Asunto(s)
Condrocitos/citología , Cartílago Elástico/citología , Fibrina/química , Hidrogeles/química , Nanoestructuras/química , Sefarosa/química , Supervivencia Celular , Células Cultivadas , Humanos , Inmunohistoquímica
6.
Int J Urol ; 23(1): 85-92, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26502190

RESUMEN

OBJECTIVE: To generate and to evaluate ex vivo a novel model of bioengineered human bladder mucosa based on fibrin-agarose biomaterials. METHODS: We first established primary cultures of stromal and epithelial cells from small biopsies of the human bladder using enzymatic digestion and selective cell culture media. Then, a bioengineered substitute of the bladder lamina propria was generated using cultured stromal cells and fibrin-agarose scaffolds, and the epithelial cells were then subcultured on top to generate a complete bladder mucosa substitute. Evaluation of this substitute was carried out by cell viability and histological analyses, immunohistochemistry for key epithelial markers and transmission electron microscopy. RESULTS: The results show a well-configured stroma substitute with a single-layer epithelium on top. This substitute was equivalent to the control bladder mucosa. After 7 days of ex vivo development, the epithelial layer expressed pancytokeratin, and cytokeratins CK7, CK8 and CK13, as well as filaggrin and ZO-2, with negative expression of CK4 and uroplakin III. A reduction of the expression of CK8, filaggrin and ZO-2 was found at day 14 of development. An immature basement membrane was detected at the transition between the epithelium and the lamina propria, with the presence of epithelial hemidesmosomes, interdigitations and immature desmosomes. CONCLUSIONS: The present results suggest that this model of bioengineered human bladder mucosa shared structural and functional similarities with the native bladder mucosa, although the epithelial cells were not fully differentiated ex vivo. We hypothesize that this bladder mucosa substitute could have potential clinical usefulness after in vivo implantation.


Asunto(s)
Membrana Mucosa/citología , Ingeniería de Tejidos/métodos , Vejiga Urinaria/citología , Adulto , Anciano , Membrana Basal/ultraestructura , Materiales Biocompatibles , Supervivencia Celular , Células Epiteliales , Fibrina , Proteínas Filagrina , Humanos , Proteínas de Filamentos Intermediarios/análisis , Queratina-13/análisis , Queratina-4/análisis , Queratina-7/análisis , Queratina-8/análisis , Masculino , Persona de Mediana Edad , Membrana Mucosa/química , Membrana Mucosa/ultraestructura , Cultivo Primario de Células , Sefarosa , Células del Estroma , Andamios del Tejido , Uroplaquina III/análisis , Proteína de la Zonula Occludens-2/análisis
7.
Cytotherapy ; 16(2): 266-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24438904

RESUMEN

BACKGROUND AIMS: Evaluation of cell viability is one of the most important steps of the quality control process for therapeutic use of cells. The aim of this study was to evaluate the long-term cell viability profile of human dental pulp stem cell (hDPSC) subcultures (beyond 10 passages) to determine which of these passages are suitable for clinical use and to identify the cell death processes that may occur in the last passages. METHODS: Four different cell viability assays were combined to determine the average cell viability levels at each cell passage: trypan blue exclusion test, water-soluble tetrazolium 1 (WST-1), LIVE/DEAD Viability/Cytotoxicity Kit and electron probe x-ray microanalysis (EPXMA). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase 4 and BCL7C Western blotting, and cell proliferation was analyzed by WST-1 and proliferating cell nuclear antigen protein detection. RESULTS: hDPSCs showed high average cell viability levels from passages 11-14, with adequate cytoplasmic and mitochondrial functionality at these subcultures. A non-significant trend to decreased cell proliferation was found from passages 16-20. EPXMA and TUNEL analyses suggested that a pre-apoptotic process could be activated from passages 15-20 (P < 0.001), with a correlation with caspase 4 and BCL7C expression. CONCLUSIONS: hDPSCs corresponding to passages 11-14 show adequate cell function, proliferation and viability. These cells could be considered as potentially useful for clinical applications.


Asunto(s)
Células Madre Adultas/metabolismo , Pulpa Dental/citología , Factores de Tiempo , Células Madre Adultas/citología , Apoptosis , Proteínas Reguladoras de la Apoptosis , Caspasas Iniciadoras/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Etiquetado Corte-Fin in Situ , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Sales de Tetrazolio , Azul de Tripano
8.
Cytotherapy ; 15(4): 507-18, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23352464

RESUMEN

BACKGROUND AIMS: One of the most important issues in tissue engineering (TE) is the search for a suitable stem cell reservoir with optimal cell viability levels for the development of new tissues relevant for therapeutic needs. The aim of this study was to evaluate the cell viability levels of 10 sequential cell passages of human dental pulp stem cells (hDPSC) to determine their potential for TE techniques. METHODS: To assess the average cell viability levels of hDPSC, four cell viability assays were used in a combinatorial approach: trypan blue exclusion test, water-soluble tetrazolium 1 assay, live/dead assay and electron probe x-ray microanalysis. RESULTS: The results showed that cell viability as determined by trypan blue staining and live/dead assays was greater than 85%, with a significant decrease at the second passage (P < 0.05) and a significant increase at the ninth passage (P < 0.05). Electron probe x-ray microanalysis showed that the highest cell viability corresponded to the ninth passage, with the lowest K/Na values found at the third passage. No statistical differences were found among the different passages for the water-soluble tetrazolium 1 assay (P = 0.219). CONCLUSIONS: Assessment of average cell viability levels showed that the highest viability of hDPSC was reached after nine passages, suggesting that this passage would be the most adequate for use in TE protocols.


Asunto(s)
Pulpa Dental/citología , Células Madre/citología , Ingeniería de Tejidos , Técnicas de Cultivo de Célula , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Microanálisis por Sonda Electrónica , Citometría de Flujo , Humanos , Sales de Tetrazolio , Azul de Tripano
9.
Front Bioeng Biotechnol ; 11: 1235161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636000

RESUMEN

Purpose: Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. Methods: In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D). Human Wharton's jelly mesenchymal stromal cells (HWJSC) were cultured in 3D using 100%, 75%, 50%, and 25% concentrations of fibrin-agarose biomaterials (FA100, FA75, FA50 and FA25 group) and compared with control cells cultured using classical 2D systems (CTR-2D). Results: Our results showed a significant increase in the number of cells generated after 7 days of culture, with cells displaying numerous expansions towards the biomaterial, and a significant overexpression of the cell proliferation marker KI67 was found for the FA75 and FA100 groups. TUNEL and qRT-PCR analyses demonstrated that the use of FIBRIAGAR-3D was not associated with an induction of apoptosis by cultured cells. Instead, the 3D system retained the expression of typical phenotypic markers of HWJSC, including CD73, CD90, CD105, NANOG and OCT4, and biosynthesis markers such as types-I and IV collagens, with significant increase of some of these markers, especially in the FA100 group. Finally, our analysis of 8 cell signaling molecules revealed a significant decrease of GM-CSF, IFN-g, IL2, IL4, IL6, IL8, and TNFα, suggesting that the 3D culture system did not induce the expression of pro-inflammatory molecules. Conclusion: These results confirm the usefulness of FIBRIAGAR-3D culture systems to increase cell proliferation without altering cell phenotype of immunogenicity and opens the door to the possibility of using this novel biofabrication method in cell therapy and tissue engineering of the human cornea, oral mucosa, skin, urethra, among other structures.

10.
Biomed Pharmacother ; 164: 115000, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301136

RESUMEN

Skin damage due to severe burns can compromise patient life. Current tissue engineering methods allow the generation of human skin substitutes for clinical use. However, this process is time-consuming, as the keratinocytes required to generate artificial skin have a low proliferation rate in culture. In this study, we evaluated the pro-proliferative effects of three natural biomolecules isolated from olive oil: phenolic extract (PE), DL-3,4-dihydroxyphenyl glycol (DHFG), and oleuropein (OLP), on cultured human skin keratinocytes. The results showed that PE and OLP increased the proliferation of immortalized human skin keratinocytes, especially at concentrations of 10 and 5 µg/mL, respectively, without altering cell viability. In contrast, DHFG did not produce a significant improvement in keratinocyte proliferation. In normal human skin keratinocytes obtained from skin biopsies, we found that PE, but not OLP, could increase the number of keratinocyte colonies and the area occupied by these cells. Furthermore, this effect was associated with increased KI-67 and Proliferating cell nuclear antigen (PCNA) gene expression. Thus, we propose that PE positively affects keratinocyte proliferation and could be used in culture protocols to improve bioartificial skin generation by tissue engineering.


Asunto(s)
Queratinocitos , Piel , Humanos , Aceite de Oliva/farmacología , Células Cultivadas , Queratinocitos/metabolismo , Ingeniería de Tejidos
11.
Bioeng Transl Med ; 8(6): e10572, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023713

RESUMEN

A previously developed fibrin-agarose skin model-UGRSKIN-showed promising clinical results in severely burnt patients. To determine the histological parameters associated to the biocompatibility and therapeutic effects of this model, we carried out a comprehensive structural and ultrastructural study of UGRSKIN grafted in severely burnt patients after 3 months of follow-up. The grafted epidermis was analogue to native human skin from day 30th onward, revealing well-structured strata with well-differentiated keratinocytes expressing CK5, CK8, CK10, claudin, plakoglobin, filaggrin, and involucrin in a similar way to controls, suggesting that the epidermis was able to mature and differentiate very early. Melanocytes and Langerhans cells were found from day 30th onward, together with a basement membrane, abundant hemidesmosomes and lack of rete ridges. At the dermal layer, we found an interface between the grafted skin and the host tissue at day 30th, which tended to disappear with time. The grafted superficial dermis showed a progressive increase in properly-oriented collagen fibers, elastic fibers and proteoglycans, including decorin, similarly to control dermis at day 60-90th of in vivo follow-up. Blood vessels determined by CD31 and SMA expression were more abundant in grafted skin than controls, whereas lymphatic vessels were more abundant at day 90th. These results contribute to shed light on the histological parameters associated to biocompatibility and therapeutic effect of the UGRSKIN model grafted in patients and demonstrate that the bioengineered skin grafted in patients is able to mature and differentiate very early at the epithelial level and after 60-90 days at the dermal level.

12.
Cells ; 12(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831296

RESUMEN

Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Adulto , Femenino , Embarazo , Humanos , Agrina/metabolismo , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Técnicas de Cultivo de Célula , Membrana Basal
13.
Front Bioeng Biotechnol ; 11: 1124995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034263

RESUMEN

Purpose: We carried out a histological characterization analysis of the stromal layer of human heterotypic cornea substitutes generated with extra-corneal cells to determine their putative usefulness in tissue engineering. Methods: Human bioartificial corneas were generated using nanostructured fibrin-agarose biomaterials with corneal stromal cells immersed within. To generate heterotypical corneas, umbilical cord Wharton's jelly stem cells (HWJSC) were cultured on the surface of the stromal substitutes to obtain an epithelial-like layer. These bioartificial corneas were compared with control native human corneas and with orthotypical corneas generated with human corneal epithelial cells on top of the stromal substitute. Both the corneal stroma and the basement membrane were analyzed using histological, histochemical and immunohistochemical methods in samples kept in culture and grafted in vivo for 12 months in the rabbit cornea. Results: Our results showed that the stroma of the bioartificial corneas kept ex vivo showed very low levels of fibrillar and non-fibrillar components of the tissue extracellular matrix. However, in vivo implantation resulted in a significant increase of the contents of collagen, proteoglycans, decorin, keratocan and lumican in the corneal stroma, showing higher levels of maturation and spatial organization of these components. Heterotypical corneas grafted in vivo for 12 months showed significantly higher contents of collagen fibers, proteoglycans and keratocan. When the basement membrane was analyzed, we found that all corneas grafted in vivo showed intense PAS signal and higher contents of nidogen-1, although the levels found in human native corneas was not reached, and a rudimentary basement membrane was observed using transmission electron microscopy. At the epithelial level, HWJSC used to generate an epithelial-like layer in ex vivo corneas were mostly negative for p63, whereas orthotypical corneas and heterotypical corneas grafted in vivo were positive. Conclusion: These results support the possibility of generating bioengineered artificial corneas using non-corneal HWJSC. Although heterotypical corneas were not completely biomimetic to the native human corneas, especially ex vivo, in vivo grafted corneas demonstrated to be highly biocompatible, and the animal cornea became properly differentiated at the stroma and basement membrane compartments. These findings open the door to the future clinical use of these bioartificial corneas.

14.
Microsc Res Tech ; 86(12): 1712-1724, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37650503

RESUMEN

BACKGROUND: Histology of human oral mucosa is closely related with its function and anatomical location, and a proper characterization of the human masticatory oral mucosa could be very useful in periodontal pathology. OBJECTIVE: In the present work, we have carried out a comprehensive study in order to determine the main histological features of parakeratinized (POM) and orthokeratinized (OOM) masticatory human oral mucosa using light and electron microscopy. METHODS: To perform this, we have used several histological, histochemical and immunohistochemical methods to detect key markets at the epithelial, basement membrane and connective tissue levels. RESULTS: Our results demonstrated that POM and OOM share many histological similarities, as expected. However, important differences were observed at the epithelial layer of POM, that was significantly thicker than the epithelial layer found in OOM, especially due to a higher number of cells at the stratum spinosum. The expression pattern of CK10 and filaggrin revealed intense signal expression in OOM as compared to POM. Collagen and proteoglycans were more abundant in OOM stroma than in POM. No differences were found for blood vessels and basement membrane. CONCLUSION: These results may contribute to a better understanding of the pathological conditions affecting the human masticatory oral mucosa. In addition, these findings could be useful for the generation of different types of oral mucosa by tissue engineering techniques. RESEARCH HIGHLIGHTS: Microscopical features of parakeratinized and orthokeratinized masticatory human oral mucosa showed important differences at both, epithelial and stromal levels. Parakeratinized masticatory human oral mucosa exert thicker epithelial layer, especially, at the stratum spinosum in comparison to orthokeratinized human oral mucosa. Cytokeratin 10 and filaggrin human epithelial markers were intensively expressed in orthokeratinized masticatory human oral mucosa in comparison to parakeratinized masticatory human oral mucosa. At the stromal level, orthokeratinized masticatory human oral mucosa exhibit higher levels of collagen and proteoglycans than parakeratinized masticatory oral mucosa. The deep knowledge of histological features of masticatory oral mucosa could lead to a better understanding of oral mucosa pathology and advanced treatments.


Asunto(s)
Proteínas Filagrina , Mucosa Bucal , Humanos , Mucosa Bucal/patología , Microscopía Electrónica , Colágeno , Proteoglicanos
15.
Biomed Pharmacother ; 162: 114612, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989713

RESUMEN

OBJECTIVES: Corneal diseases are among the main causes of blindness, with approximately 4.6 and 23 million patients worldwide suffering from bilateral and unilateral corneal blindness, respectively. The standard treatment for severe corneal diseases is corneal transplantation. However, relevant disadvantages, particularly in high-risk conditions, have focused the attention on the search for alternatives. METHODS: We report interim findings of a phase I-II clinical study evaluating the safety and preliminary efficacy of a tissue-engineered corneal substitute composed of a nanostructured fibrin-agarose biocompatible scaffold combined with allogeneic corneal epithelial and stromal cells (NANOULCOR). 5 subjects (5 eyes) suffering from trophic corneal ulcers refractory to conventional treatments, who combined stromal degradation or fibrosis and limbal stem cell deficiency, were included and treated with this allogeneic anterior corneal substitute. RESULTS: The implant completely covered the corneal surface, and ocular surface inflammation decreased following surgery. Only four adverse reactions were registered, and none of them were severe. No detachment, ulcer relapse nor surgical re-interventions were registered after 2 years of follow-up. No signs of graft rejection, local infection or corneal neovascularization were observed either. Efficacy was measured as a significant postoperative improvement in terms of the eye complication grading scales. Anterior segment optical coherence tomography images revealed a more homogeneous and stable ocular surface, with complete scaffold degradation occurring within 3-12 weeks after surgery. CONCLUSIONS: Our findings suggest that the surgical application of this allogeneic anterior human corneal substitute is feasible and safe, showing partial efficacy in the restoration of the corneal surface.


Asunto(s)
Enfermedades de la Córnea , Trasplante de Células Madre Hematopoyéticas , Queratitis , Humanos , Córnea , Trasplante de Células Madre , Ceguera
16.
Cells Tissues Organs ; 196(1): 1-12, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22146480

RESUMEN

Development of human skin substitutes by tissue engineering may offer new therapeutic alternatives to the use of autologous tissue grafts. For that reason, it is necessary to investigate and develop new biocompatible biomaterials that support the generation of a proper human skin construct. In this study, we generated a novel model of bioengineered human skin substitute using human cells obtained from skin biopsies and fibrin-agarose biomaterials and we evaluated this model both at the ex vivo and the in vivo levels. Once the dermal fibroblasts and the epithelial keratinocytes were isolated and expanded in culture, we used fibrin-agarose scaffolds for the development of a full-thickness human skin construct, which was evaluated after 1, 2, 3 and 4 weeks of development ex vivo. The skin substitutes were then grafted onto immune-deficient nude mice and analyzed at days 10, 20, 30 and 40 postimplantation using transmission electron microscopy, histochemistry and immunofluorescence. The results demonstrated that the fibrin-agarose artificial skin had adequate biocompatibility and proper biomechanical properties. A proper development of both the bioengineered dermis and epidermis was found after 30 days in vivo, although the tissues kept ex vivo and those implanted in the animal model for 10 or 20 days showed lower levels of differentiation. In summary, our model of fibrin-agarose skin equivalent was able to reproduce the structure and histological architecture of the native human skin, especially after long-term in vivo implantation, suggesting that these tissues could reproduce the native skin.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Epiteliales/citología , Fibrina/farmacología , Sefarosa/farmacología , Piel Artificial , Ingeniería de Tejidos/métodos , Animales , Bioingeniería , Células Cultivadas , Dermis/efectos de los fármacos , Dermis/ultraestructura , Epidermis/efectos de los fármacos , Epidermis/ultraestructura , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Ratones , Ratones Desnudos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
17.
Front Bioeng Biotechnol ; 10: 876734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662841

RESUMEN

In the present work, we evaluated the potential of maslinic acid (MA) to improve currently available keratinocyte culture methods for use in skin tissue engineering. Results showed that MA can increase cell proliferation and WST-1 activity of human keratinocytes after 24, 48, and 72 h, especially at the concentration of 5 µg/ml, without affecting cell viability. This effect was associated to a significant increase of KI-67 protein expression and upregulation of several genes associated to cell proliferation (PCNA) and differentiation (cytokeratins, intercellular junctions and basement membrane related genes). When human keratinocytes were isolated from skin biopsies, we found that MA at the concentration of 5 µg/ml significantly increased the efficiency of the explant and the cell dissociation methods. These results revealed the positive effects of MA to optimize human keratinocyte culture protocols for use in skin tissue engineering.

18.
Biomedicines ; 10(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35884945

RESUMEN

The most recent generation of bioengineered human skin allows for the efficient treatment of patients with severe skin defects. Despite UV sunlight can seriously affect human skin, the optical behavior in the UV range of skin models is still unexplored. In the present study, absorbance and transmittance of the UGRSKIN bioartificial skin substitute generated with human skin cells combined with fibrin-agarose biomaterials were evaluated for: UV-C (200−280 nm), -B (280−315 nm), and -A (315−400 nm) spectral range after 7, 14, 21 and 28 days of ex vivo development. The epidermis of the bioartificial skin substitute was able to mature and differentiate in a time-dependent manner, expressing relevant molecules able to absorb most of the incoming UV radiation. Absorbance spectral behavior of the skin substitutes showed similar patterns to control native skin (VAF > 99.4%), with values 0.85−0.90 times lower than control values at 7 and 14- days and 1.05−1.10 times the control values at 21- and 28-days. UV absorbance increased, and UV transmission decreased with culture time, and comparable results to the control were found at 21 and 28 days. These findings support the use of samples corresponding to 21 or 28 days of development for clinical purposes due to their higher histological similarities with native skin, but also because of their absorbance of UV radiation.

19.
J Pers Med ; 12(4)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35455764

RESUMEN

The embryonic development of the human umbilical cord (hUC) is complex, and different regions can be identified in this structure. The aim of this work is to characterize the hUC at in situ and ex vivo levels to stablish their potential use in vascular regeneration. Human umbilical cords were obtained and histologically prepared for in the situ analysis of four hUC regions (intervascular-IV, perivascular-PV, subaminoblastic-SAM, and Wharton's jelly-WH), and primary cell cultures of mesenchymal stem cells (hUC-MSC) isolated from each region were obtained. The results confirmed the heterogeneity of the hUC, with the IV and PV zones tending to show the higher in situ expression of several components of the extracellular matrix (collagens, proteoglycans, and glycosaminoglycans), vimentin, and MSC markers (especially CD73), although isolation and ex vivo culture resulted in a homogeneous cell profile. Three vascular markers were positive in situ, especially vWF, followed by CD34 and CD31, and isolation and culture revealed that the region associated with the highest expression of vascular markers was IV, followed by PV. These results confirm the heterogeneity of the hUC and the need for selecting cells from specific regions of the hUC for particular applications in tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA