Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Syst Biol ; 67(6): 1025-1040, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669054

RESUMEN

Phylogenetic diversity (PD) is a measure of the evolutionary legacy of a group of species, which can be used to define conservation priorities. It has been shown that an important loss of species diversity can sometimes lead to a much less important loss of PD, depending on the topology of the species tree and on the distribution of its branch lengths. However, the rate of decrease of PD strongly depends on the relative depths of the nodes in the tree and on the order in which species become extinct. We introduce a new, sampling-consistent, three-parameter model generating random trees with covarying topology, clades relative depths, and clades relative extinction risks. This model can be seen as an extension to Aldous' one parameter splitting model ($\beta$, which controls for tree balance) with two additional parameters: a new parameter $\alpha$ quantifying the relation between age and richness of subclades, and a parameter $\eta$ quantifying the relation between relative abundance and richness of subclades, taken herein as a proxy for overall extinction risk. We show on simulated phylogenies that loss of PD depends on the combined effect of all three parameters, $\beta$, $\alpha,$ and $\eta$. In particular, PD may decrease as fast as species diversity when high extinction risks are clustered within small, old clades, corresponding to a parameter range that we term the "danger zone" ($\beta<-1$ or $\alpha<0$; $\eta>1$). Besides, when high extinction risks are clustered within large clades, the loss of PD can be higher in trees that are more balanced ($\beta>0$), in contrast to the predictions of earlier studies based on simpler models. We propose a Monte-Carlo algorithm, tested on simulated data, to infer all three parameters. Applying it to a real data set comprising 120 bird clades (class Aves) with known range sizes, we show that parameter estimates precisely fall close to the danger zone: the combination of their ranking tree shape and nonrandom extinctions risks makes them prone to a sudden collapse of PD.


Asunto(s)
Biodiversidad , Extinción Biológica , Modelos Biológicos , Filogenia , Algoritmos , Clasificación , Método de Montecarlo
2.
Syst Biol ; 64(4): 590-607, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25771083

RESUMEN

Whether biotic or abiotic factors are the dominant drivers of clade diversification is a long-standing question in evolutionary biology. The ubiquitous patterns of phylogenetic imbalance and branching slowdown have been taken as supporting the role of ecological niche filling and spatial heterogeneity in ecological features, and thus of biotic processes, in diversification. However, a proper theoretical assessment of the relative roles of biotic and abiotic factors in macroevolution requires models that integrate both types of factors, and such models have been lacking. In this study, we use an individual-based model to investigate the temporal patterns of diversification driven by ecological speciation in a stochastically fluctuating geographic landscape. The model generates phylogenies whose shape evolves as the clade ages. Stabilization of tree shape often occurs after ecological saturation, revealing species turnover caused by competition and demographic stochasticity. In the initial phase of diversification (allopatric radiation into an empty landscape), trees tend to be unbalanced and branching slows down. As diversification proceeds further due to landscape dynamics, balance and branching tempo may increase and become positive. Three main conclusions follow. First, the phylogenies of ecologically saturated clades do not always exhibit branching slowdown. Branching slowdown requires that competition be wide or heterogeneous across the landscape, or that the characteristics of landscape dynamics vary geographically. Conversely, branching acceleration is predicted under narrow competition or frequent local catastrophes. Second, ecological heterogeneity does not necessarily cause phylogenies to be unbalanced--short time in geographical isolation or frequent local catastrophes may lead to balanced trees despite spatial heterogeneity. Conversely, unbalanced trees can emerge without spatial heterogeneity, notably if competition is wide. Third, short isolation time causes a radically different and quite robust pattern of phylogenies that are balanced and yet exhibit branching slowdown. In conclusion, biotic factors have a strong and diverse influence on the shape of phylogenies of ecologically saturating clades and create the evolutionary template in which branching slowdown and tree imbalance may occur. However, the contingency of landscape dynamics and resource distribution can cause wide variation in branching tempo and tree balance. Finally, considerable variation in tree shape among simulation replicates calls for caution when interpreting variation in the shape of real phylogenies.


Asunto(s)
Modelos Biológicos , Filogenia , Animales , Simulación por Computador , Ecología , Geografía , Factores de Tiempo
3.
PLoS Comput Biol ; 9(5): e1003039, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675291

RESUMEN

Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.


Asunto(s)
Enfermedades Endémicas , Modelos Biológicos , Peste/epidemiología , Animales , Simulación por Computador , Resistencia a la Enfermedad , Ecología , Fertilidad , Madagascar/epidemiología , Cadenas de Markov , Peste/inmunología , Peste/microbiología , Peste/transmisión , Ratas , Siphonaptera/microbiología
4.
Nat Commun ; 9(1): 3013, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068945

RESUMEN

How ecological interactions, genetic processes, and environmental variability jointly shape the evolution of species diversity remains a challenging problem in biology. We developed an individual-based model of clade diversification to predict macroevolutionary dynamics when resource competition, genetic differentiation, and landscape fluctuations interact. Diversification begins with a phase of geographic adaptive radiation. Extinction rates rise sharply at the onset of the next phase. In this phase of niche self-structuring, speciation and extinction processes, albeit driven by biotic mechanisms (competition and hybridization), have essentially constant rates, determined primarily by the abiotic pace of landscape dynamics. The final phase of diversification begins when intense competition prevents dispersing individuals from establishing new populations. Species' ranges shrink, causing negative diversity-dependence of speciation rates. These results show how ecological and microevolutionary processes shape macroevolutionary dynamics and rates; they caution against the notion of ecological limits to diversity, and suggest new directions for the phylogenetic analysis of diversification.


Asunto(s)
Extinción Biológica , Especiación Genética , Filogenia , Biodiversidad , Simulación por Computador , Geografía
5.
Evolution ; 70(11): 2657-2666, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27624801

RESUMEN

Islands are particularly suited to testing hypotheses about the ecological and evolutionary mechanisms underpinning community assembly. Yet the complex spatial arrangements of real island systems have received little attention from both empirical studies and theoretical models. Here, we investigate the extent to which the spatial structure of archipelagos affects species diversity and endemism. We start by proposing a new spatially structured neutral model that explicitly considers archipelago structure, and then investigate its predictions under a diversity of scenarios. Our results suggest that considering the spatial structure of archipelagos is crucial to understanding their diversity and endemism, with structured island systems acting both as "museums" and "cradles" of biodiversity. These dynamics of diversification may change the traditionally expected pattern of decrease in species richness with distance from the mainland, even potentially leading to increasing patterns for taxa with high speciation rates in archipelagos off species-poor continental areas. Our results also predict that, within spatially structured archipelagos, metapopulation dynamics and evolutionary processes can generate higher diversity on islands more centrally placed than at the periphery. We derive from our results a set of theoretical predictions, potentially testable with empirical data.


Asunto(s)
Biodiversidad , Especiación Genética , Islas , Modelos Genéticos , Animales , Fenómenos Geológicos , Población/genética , Aislamiento Reproductivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA