Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 90-101.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31080012

RESUMEN

CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , ADN Intergénico/química , ADN/química , Streptococcus thermophilus/genética , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN Intergénico/genética , ADN Intergénico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus thermophilus/metabolismo , Especificidad por Sustrato
2.
Bioinformatics ; 40(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38507682

RESUMEN

MOTIVATION: Reliable prediction of protein thermostability from its sequence is valuable for both academic and industrial research. This prediction problem can be tackled using machine learning and by taking advantage of the recent blossoming of deep learning methods for sequence analysis. These methods can facilitate training on more data and, possibly, enable the development of more versatile thermostability predictors for multiple ranges of temperatures. RESULTS: We applied the principle of transfer learning to predict protein thermostability using embeddings generated by protein language models (pLMs) from an input protein sequence. We used large pLMs that were pre-trained on hundreds of millions of known sequences. The embeddings from such models allowed us to efficiently train and validate a high-performing prediction method using over one million sequences that we collected from organisms with annotated growth temperatures. Our method, TemStaPro (Temperatures of Stability for Proteins), was used to predict thermostability of CRISPR-Cas Class II effector proteins (C2EPs). Predictions indicated sharp differences among groups of C2EPs in terms of thermostability and were largely in tune with previously published and our newly obtained experimental data. AVAILABILITY AND IMPLEMENTATION: TemStaPro software and the related data are freely available from https://github.com/ievapudz/TemStaPro and https://doi.org/10.5281/zenodo.7743637.


Asunto(s)
Aprendizaje Automático , Proteínas , Proteínas/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Lenguaje
3.
EMBO Rep ; 23(12): e55481, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36268581

RESUMEN

Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
4.
Mol Cell ; 61(6): 793-4, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990984

RESUMEN

Papers by Anders et al. (2016) and Hirano et al. (2016b), published in this issue of Molecular Cell, show that SpCas9 uses an induced fit mechanism to recognize altered protospacer adjacent motif (PAM) sequences.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , ADN Intergénico/genética , Endonucleasas/química , ARN Guía de Kinetoplastida/química
5.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496535

RESUMEN

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Asunto(s)
Sistemas CRISPR-Cas/genética , División del ADN , Estructuras R-Loop/genética , ARN Guía de Kinetoplastida/genética , Aptámeros de Nucleótidos/genética , Edición Génica , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestructura , Imagen Individual de Molécula , Streptococcus pyogenes/genética
6.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29891635

RESUMEN

CRISPR-Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR-Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I-E CRISPR4-Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR-Cas systems are required for spacer acquisition. The St4 CRISPR-Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2-DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3'-overhangs (protospacers) in vitro We further show that the DnaQ domain of Cas2 functions as a 3'-5'-exonuclease that processes 3'-overhangs of the protospacer to promote integration.


Asunto(s)
Inmunidad Adaptativa/genética , Sistemas CRISPR-Cas/genética , ADN Intergénico/genética , Streptococcus thermophilus/genética , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Dominios Proteicos/genética , Streptococcus thermophilus/inmunología
7.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367000

RESUMEN

While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding the phages infecting them is limited. Here, we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (here, CL 131), a Siphoviridae phage that infects the filamentous diazotrophic bloom-forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112,793-bp double-stranded DNA (dsDNA) genome encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster from phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of a GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share a common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.IMPORTANCE The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data, and host CRISPR-Cas systems contribute toward a better understanding of aquatic viral diversity and distribution in general and of brackish-water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g., self-excising intein-containing putative dCTP deaminase and putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.


Asunto(s)
Aphanizomenon/virología , Genoma Viral/genética , Siphoviridae/genética , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Viral/análisis , Lituania , Filogenia , Siphoviridae/clasificación
8.
Methods ; 121-122: 3-8, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28344037

RESUMEN

Recently the Cas9, an RNA guided DNA endonuclease, emerged as a powerful tool for targeted genome manipulations. Cas9 protein can be reprogrammed to cleave, bind or nick any DNA target by simply changing crRNA sequence, however a short nucleotide sequence, termed PAM, is required to initiate crRNA hybridization to the DNA target. PAM sequence is recognized by Cas9 protein and must be determined experimentally for each Cas9 variant. Exploration of Cas9 orthologs could offer a diversity of PAM sequences and novel biochemical properties that may be beneficial for genome editing applications. Here we briefly review and compare Cas9 PAM identification assays that can be adopted for other PAM-dependent CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Genoma Humano , Ensayos Analíticos de Alto Rendimiento , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Línea Celular , Biología Computacional , ADN/metabolismo , Endonucleasas/metabolismo , Biblioteca de Genes , Humanos , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Análisis de Secuencia de ADN
9.
EMBO J ; 32(3): 385-94, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23334296

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-encoded immunity in Type I systems relies on the Cascade (CRISPR-associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4-Cas (CRISPR-associated) system (St-CRISPR4-Cas), we isolated an effector complex (St-Cascade) containing 61-nucleotide CRISPR RNA (crRNA). We show that St-Cascade, guided by crRNA, binds in vitro to a matching proto-spacer if a proto-spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (-1 position) of the proto-spacer. In the presence of a correct PAM, St-Cascade binding to the target DNA generates an R-loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R-loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St-CRISPR4-Cas and other Type I systems.


Asunto(s)
Inmunidad Adaptativa/inmunología , ADN Helicasas/metabolismo , ARN Bacteriano/inmunología , Secuencias Repetitivas de Ácidos Nucleicos/inmunología , Ribonucleoproteínas/inmunología , Streptococcus thermophilus/inmunología , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , División del ADN , Electroforesis en Gel de Gradiente Desnaturalizante , Ensayo de Cambio de Movilidad Electroforética , Técnicas In Vitro , Espectrometría de Masas , Datos de Secuencia Molecular , Plásmidos/metabolismo , ARN Bacteriano/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Ribonucleoproteínas/metabolismo , Colorantes de Rosanilina , Análisis de Secuencia de ADN , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/virología
10.
Mol Ther ; 24(3): 636-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26658966

RESUMEN

RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Humano , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Endonucleasas/metabolismo , Activación Enzimática , Vectores Genéticos , Humanos , Unión Proteica , ARN Guía de Kinetoplastida , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 111(27): 9798-803, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24912165

RESUMEN

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems protect bacteria and archaea from infection by viruses and plasmids. Central to this defense is a ribonucleoprotein complex that produces RNA-guided cleavage of foreign nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA component of the complex encodes target recognition by forming a site-specific hybrid (R-loop) with its complement (protospacer) on an invading DNA while displacing the noncomplementary strand. Subsequently, the R-loop structure triggers DNA degradation. Although these reactions have been reconstituted, the exact mechanism of R-loop formation has not been fully resolved. Here, we use single-molecule DNA supercoiling to directly observe and quantify the dynamics of torque-dependent R-loop formation and dissociation for both Cascade- and Cas9-based CRISPR-Cas systems. We find that the protospacer adjacent motif (PAM) affects primarily the R-loop association rates, whereas protospacer elements distal to the PAM affect primarily R-loop stability. Furthermore, Cascade has higher torque stability than Cas9 by using a conformational locking step. Our data provide direct evidence for directional R-loop formation, starting from PAM recognition and expanding toward the distal protospacer end. Moreover, we introduce DNA supercoiling as a quantitative tool to explore the sequence requirements and promiscuities of orthogonal CRISPR-Cas systems in rapidly emerging gene-targeting applications.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN Superhelicoidal/química , Mutación , Conformación Proteica , ARN Pequeño no Traducido
12.
J Ind Microbiol Biotechnol ; 43(8): 1183-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255973

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.


Asunto(s)
Fagos de Bacillus/genética , Bacillus subtilis/genética , Bacillus subtilis/virología , Sistemas CRISPR-Cas , Plásmidos/genética , Streptococcus thermophilus/genética
13.
EMBO J ; 30(7): 1335-42, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21343909

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Streptococcus thermophilus/enzimología , Adenosina Trifosfato/metabolismo , Clonación Molecular , ADN Helicasas/genética , Análisis Mutacional de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Análisis de Secuencia de ADN , Streptococcus thermophilus/genética
14.
Cell Mol Life Sci ; 71(3): 449-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23959171

RESUMEN

Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction­modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR­Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR­Cas systems.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/patogenicidad , Evolución Biológica , Proteínas Asociadas a CRISPR/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Bacteriano/inmunología , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Bacteriano/genética , Modelos Biológicos , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 109(39): E2579-86, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22949671

RESUMEN

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system introduces in vitro a double-strand break at a specific site in DNA containing a sequence complementary to crRNA. DNA cleavage is executed by Cas9, which uses two distinct active sites, RuvC and HNH, to generate site-specific nicks on opposite DNA strands. Results demonstrate that the Cas9-crRNA complex functions as an RNA-guided endonuclease with RNA-directed target sequence recognition and protein-mediated DNA cleavage. These findings pave the way for engineering of universal programmable RNA-guided DNA endonucleases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Endonucleasas/metabolismo , ARN Bacteriano/metabolismo , Ribonucleoproteínas/metabolismo , Streptococcus thermophilus/enzimología , Proteínas Bacterianas/genética , Endonucleasas/genética , ARN Bacteriano/genética , Ribonucleoproteínas/genética , Streptococcus thermophilus/genética
16.
Biochem Soc Trans ; 41(6): 1401-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256227

RESUMEN

The ternary Cas9-crRNA-tracrRNA complex (Cas9t) of the Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system functions as an Mg2+-dependent RNA-directed DNA endonuclease that locates its DNA target guided by the crRNA (CRISPR RNA) in the tracrRNA-crRNA structure and introduces a double-strand break at a specific site in DNA. The simple modular organization of Cas9t, where specificity for the DNA target is encoded by a small crRNA and the cleavage reaction is executed by the Cas9 endonuclease, provides a versatile platform for the engineering of universal RNA-directed DNA endonucleases. By altering the crRNA sequence within the Cas9t complex, programmable endonucleases can be designed for both in vitro and in vivo applications. Cas9t has been recently employed as a gene-editing tool in various eukaryotic cell types. Using Streptococcus thermophilus Cas9t as a model system, we demonstrate the feasibility of Cas9t as a programmable molecular tool for in vitro DNA manipulations.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , División del ADN , ADN/metabolismo , Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/genética , Endonucleasas/metabolismo , Ingeniería Genética , Humanos , ADN Polimerasa Dirigida por ARN/metabolismo , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/metabolismo
17.
RNA Biol ; 10(5): 841-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23535272

RESUMEN

The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Bacteriano/genética , Ribonucleasa III/metabolismo , Streptococcus thermophilus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Alineación de Secuencia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Streptococcus thermophilus/metabolismo
18.
Nucleic Acids Res ; 39(21): 9275-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21813460

RESUMEN

The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elements that subsequently direct the specific cleavage of invasive homologous DNA sequences. Here, we show that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli and provide heterologous protection against plasmid transformation and phage infection. We show that interference is sequence-specific, and that mutations in the vicinity or within the proto-spacer adjacent motif (PAM) allow plasmids to escape CRISPR-encoded immunity. We also establish that cas9 is the sole cas gene necessary for CRISPR-encoded interference. Furthermore, mutation analysis revealed that interference relies on the Cas9 McrA/HNH- and RuvC/RNaseH-motifs. Altogether, our results show that active CRISPR/Cas systems can be transferred across distant genera and provide heterologous interference against invasive nucleic acids. This can be leveraged to develop strains more robust against phage attack, and safer organisms less likely to uptake and disseminate plasmid-encoded undesirable genetic elements.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Escherichia coli/genética , Streptococcus thermophilus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriófago lambda/genética , Secuencia de Bases , Clonación Molecular , Escherichia coli/inmunología , Escherichia coli/virología , Inmunidad , Datos de Secuencia Molecular , Mutación , Motivos de Nucleótidos , Plásmidos/genética , Estructura Terciaria de Proteína , Secuencias Repetitivas de Ácidos Nucleicos , Transformación Bacteriana
19.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38034032

RESUMEN

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

20.
CRISPR J ; 4(3): 400-415, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34152221

RESUMEN

The discovery of CRISPR has revolutionized the field of genome engineering, but the potential of this technology is far from reaching its limits. In this review, we explore the broad range of applications of CRISPR technology to highlight the rapid expansion of the field beyond gene editing alone. It has been demonstrated that CRISPR technology can control gene expression, spatiotemporally image the genome in vivo, and detect specific nucleic acid sequences for diagnostics. In addition, new technologies are under development to improve CRISPR quality controls for gene editing, thereby improving the reliability of these technologies for therapeutics and beyond. These are just some of the many CRISPR tools that have been developed in recent years, and the toolbox continues to diversify.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Expresión Génica , Técnicas Genéticas , Genoma , Patología Molecular/métodos , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA