Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Technol ; 56(12): 7729-7740, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670821

RESUMEN

Tracking Saharan-Sahelian dust across the globe is essential to elucidate its effects on Earth's climate, radiation budget, hydrologic cycle, nutrient cycling, and also human health when it seasonally enters populated/industrialized regions of Africa, Europe, and North America. However, the elemental composition of mineral dust arising locally from construction activities and aeolian soil resuspension overlaps with African dust. Therefore, we derived a novel "isotope-resolved chemical mass balance" (IRCMB) method by employing radiogenic strontium, neodymium, and hafnium isotopes to accurately differentiate and quantitatively apportion collinear proximal and synoptic-scale crustal and anthropogenic mineral dust sources. IRCMB was applied to two air masses that transported African dust to Barbados and Texas to track particulate matter (PM) spikes at both locations. During Saharan-Sahelian intrusions, the radiogenic content of urban PM2.5 increased with respect to 87Sr/86Sr and 176Hf/177Hf but decreased in terms of 143Nd/144Nd, demonstrating the ability of these isotopes to sensitively track African dust intrusions even in complex metropolitan atmospheres. The principal aerosol strontium, neodymium, and hafnium end members were concrete dust and soil, soil and motor vehicles, and motor vehicles and North African dust, respectively. IRCMB separated and quantified local soil and distal crustal dust even when PM2.5 concentrations were low, opening a promising source apportionment avenue for urbanized/industrialized atmospheres.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Polvo/análisis , Monitoreo del Ambiente/métodos , Hafnio/análisis , Humanos , Isótopos , Minerales , Neodimio/análisis , Material Particulado/análisis , Suelo , Estroncio , Texas
2.
Proc Natl Acad Sci U S A ; 116(33): 16216-16221, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358622

RESUMEN

The deposition of phosphorus (P) from African dust is believed to play an important role in bolstering primary productivity in the Amazon Basin and Tropical Atlantic Ocean (TAO), leading to sequestration of carbon dioxide. However, there are few measurements of African dust in South America that can robustly test this hypothesis and even fewer measurements of soluble P, which is readily available for stimulating primary production in the ocean. To test this hypothesis, we measured total and soluble P in long-range transported aerosols collected in Cayenne, French Guiana, a TAO coastal site located at the northeastern edge of the Amazon. Our measurements confirm that in boreal spring when African dust transport is greatest, dust supplies the majority of P, of which 5% is soluble. In boreal fall, when dust transport is at an annual minimum, we measured unexpectedly high concentrations of soluble P, which we show is associated with the transport of biomass burning (BB) from southern Africa. Integrating our results into a chemical transport model, we show that African BB supplies up to half of the P deposited annually to the Amazon from transported African aerosol. This observational study links P-rich BB aerosols from Africa to enhanced P deposition in the Amazon. Contrary to current thought, we also show that African BB is a more important source of soluble P than dust to the TAO and oceans in the Southern Hemisphere and may be more important for marine productivity, particularly in boreal summer and fall.


Asunto(s)
Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Fósforo/metabolismo , Aerosoles/química , África Austral , Océano Atlántico , Atmósfera , Biomasa , Dióxido de Carbono/efectos adversos , Dióxido de Carbono/metabolismo , Guyana Francesa , Océanos y Mares , Estaciones del Año , América del Sur
3.
Acc Chem Res ; 53(5): 1005-1013, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32349473

RESUMEN

The impact of atmospheric particulate matter (i.e., aerosols) on Earth's radiative balance has been and continues to be the leading source of uncertainty with respect to predictions of future temperature increases due to climate change. Mineral dust particles transported from deserts and semiarid regions across the globe are a dominant contributor to the aerosol burden. Dust has many and diverse effects on Earth's climate: it directly scatters and/or absorbs incoming sunlight; it reacts with trace gases leading to impacts on the oxidizing capacity of the atmosphere that affect both the lifetime of the greenhouse gas methane in addition to concentrations of tropospheric ozone-a greenhouse gas and criteria air pollutant; it influences the production as well as the lifetime and radiative properties of clouds; and it deposits nutrients to aquatic and terrestrial ecosystems that can stimulate primary production and facilitate the sequestration of atmospheric carbon dioxide (CO2). This Account will focus on the last three effects. The ability of dust to affect clouds and biogeochemical cycles hinges upon the chemical nature of dust particles-in particular, whether the compounds found in dust particles are water-soluble. The solubility of nutrients found in dust is particularly critical for determining the impact of atmospheric deposition on ocean productivity. The traditional viewpoint is that dust is inherently insoluble but reactive toward trace acidic gases, a process herein referred to as chemical aging. These reactions are thought to affect the oxidizing capacity of the atmosphere while effectively transforming the chemical composition of dust by increasing its solubility. Consequently, chemical aging is hypothesized to substantially increase the impact of dust on cloud droplet formation and marine biogeochemical cycles.This Account presents recent advances in our understanding of the mechanisms that determine how efficiently dust undergoes chemical aging and what the consequences of these processes are for the different effects of dust on Earth's climate. This Account will re-examine the traditional viewpoint that dust chemical aging strongly impacts marine biogeochemical cycles as well as the ability of dust to nucleate cloud droplets. Laboratory studies on environmental samples are combined with chemical analysis of field samples collected at dust transport receptor sites to better understand chemical aging mechanisms and determine the impact of dust on tropospheric oxidants, clouds, and biogeochemical cycles. Our results highlight the important role that dust mineralogy plays in both the nucleation of clouds as well as the kinetics responsible for the chemical aging of dust. This Account will present cases where dust contains inherently soluble minerals and does not require chemical aging in order to efficiently nucleate clouds in the atmosphere. Lastly, this Account illustrates the critical role that nondust aerosols, namely, wildfire and combustion emissions, play as a supplier of soluble nutrients important for biogeochemical cycles, particularly in marine environments. This Account will discuss these findings and highlight future research directions and recommendations to better understand dust-climate interactions and the emerging role of biomass burning aerosol in marine biogeochemical cycles.

4.
Environ Sci Technol ; 55(5): 2869-2877, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33587619

RESUMEN

Atomic chlorine (Cl•) affects air quality and atmospheric oxidizing capacity. Nitryl chloride (ClNO2) - a common Cl• source-forms when chloride-containing aerosols react with dinitrogen pentoxide (N2O5). A recent study showed that saline lakebed (playa) dust is an inland source of particulate chloride (Cl-) that generates high ClNO2. However, the underlying physiochemical factors responsible for observed yields are poorly understood. To elucidate these controlling factors, we utilized single particle and bulk techniques to determine the chemical composition and mineralogy of playa sediment and dust samples from the southwest United States. Single particle analysis shows trace highly hygroscopic magnesium and calcium Cl-containing minerals are present and likely facilitate ClNO2 formation at low humidity. Single particle and mineralogical analysis detected playa sediment organic matter that hinders N2O5 uptake as well as 10 Å-clay minerals (e.g., Illite) that compete with water and chloride for N2O5. Finally, we show that the composition of the aerosol surface, rather than the bulk, is critical in ClNO2 formation. These findings underscore the importance of mixing state, competing reactions, and surface chemistry on N2O5 uptake and ClNO2 yield for playa dusts and, likely, other aerosol systems. Therefore, consideration of particle surface composition is necessary to improve ClNO2 and air quality modeling.


Asunto(s)
Contaminación del Aire , Polvo , Aerosoles , Cloro , Carbón Mineral
5.
Atmos Environ (1994) ; 2542021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211332

RESUMEN

Coastal southeast Florida experiences a wide range of aerosol conditions, including African dust, biomass burning (BB) aerosols, as well as sea salt and other locally-emitted aerosols. These aerosols are important sources of cloud condensation nuclei (CCN), which play an essential role in governing cloud radiative properties. As marine environments dominate the surface of Earth, CCN characteristics in coastal southeast Florida have broad implications for other regions with the added feature that this site is perturbed by both natural and anthropogenic emissions. This study investigates the influence of different air mass types on CCN concentrations at 0.2% (CCN0.2%) and 1.0% (CCN1.0%) supersaturation (SS) based on ground site measurements during selected months in 2013, 2017, and 2018. Average CCN0.2% and CCN1.0% concentrations were 373 ± 200 cm-3 and 584 ± 323 cm-3, respectively, for four selected days with minimal presence of African dust and BB (i.e., background days). CCN concentrations were not elevated on the four days with highest influence of African dust (289 ± 104 cm-3 [0.2% SS] and 591 ± 302 cm-3 [1.0% SS]), consistent with high dust mass concentrations comprised of coarse particles that are few in number. In contrast, CCN concentrations were substantially enhanced on the five days with the greatest impact from BB (1408 ± 976 cm-3 [0.2% SS] and 3337 ± 1252 cm-3 [1.0% SS]). Ratios of CCN0.2%:CCN1.0% were used to compare the hygroscopicity of the aerosols associated with African dust, BB, and background days. Average ratios were similar for days impacted by African dust and BB (0.54 ± 0.17 and 0.55 ± 0.17, respectively). A 29% higher average ratio was observed on background days (0.71 ± 0.14), owing in part to a strong presence of sea salt and reduced presence of more hydrophobic species such as those of a carbonaceous or mineral-dust nature. Finally, periods of heavy rainfall were shown to effectively decrease both CCN0.2% and CCN1.0% concentrations. However, the rate varied at which such concentrations increased after the rain. This work contributes knowledge on the nucleating ability of African dust and BB in a marine environment after varying periods of atmospheric transport (days to weeks). The results can be used to understand the hygroscopicity of these air mass types, predict how they may influence cloud properties, and provide a valuable model constraint when predicting CCN concentrations in comparable situations.

6.
Environ Sci Technol ; 53(13): 7442-7452, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31117541

RESUMEN

Nitryl chloride (ClNO2), formed when dinitrogen pentoxide (N2O5) reacts with chloride-containing aerosol, photolyzes to produce chlorine radicals that facilitate the formation of tropospheric ozone. ClNO2 has been measured in continental areas; however, the sources of particulate chloride required to form ClNO2 in inland regions remain unclear. Dust emitted from saline playas (e.g., dried lakebeds) contains salts that can potentially form ClNO2 in inland regions. Here, we present the first laboratory measurements demonstrating the production of ClNO2 from playa dusts. N2O5 reactive uptake coefficients (γN2O5) ranged from ∼10-3 to 10-1 and ClNO2 yields (φClNO2) were >50% for all playas tested except one. In general, as the soluble ion fraction of playa dusts increases, γN2O5 decreases and φClNO2 increases. We attribute this finding to a transition from aerosol surfaces dominated by silicates that react efficiently with N2O5 and produce little ClNO2 to aerosols that behave like deliquesced chloride-containing salts that generate high yields of ClNO2. Molecular bromine (Br2) and nitryl bromide (BrNO2) were also detected, highlighting that playas facilitate the heterogeneous production of brominated compounds. Our results suggest that parameterizations and models should be updated to include playas as an inland source of aerosol chloride capable of efficiently generating ClNO2.


Asunto(s)
Polvo , Ozono , Aerosoles , Cloruros , Cloro
7.
Environ Sci Technol ; 52(3): 1191-1199, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29244949

RESUMEN

Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.


Asunto(s)
Compuestos Orgánicos , Aerosoles , Difusión , Cinética , Viscosidad
8.
Environ Sci Technol ; 51(3): 1348-1356, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28005339

RESUMEN

Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of AFHH = 2.20 ± 0.60 and BFHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.


Asunto(s)
Aerosoles , Polvo , Clima , Sales (Química) , Humectabilidad
9.
J Phys Chem A ; 120(7): 1039-45, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26836323

RESUMEN

Heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosol particles impact air quality and climate, yet aspects of the relevant physical chemistry remain unresolved. One important consideration is the competing effects of diffusion and the rate of chemical reaction within the particle, which determines the length that N2O5 travels within a particle before reacting, referred to as the reacto-diffusive length (l). Large values of l imply a dependence of the reactive uptake efficiency of N2O5, i.e., γ(N2O5), on particle size. We present measurements of the size dependence of γ(N2O5) on aqueous sodium chloride, ammonium sulfate, and ammonium bisulfate particles. γ(N2O5) on ammonium sulfate and ammonium bisulfate particles ranged from 0.016 ± 0.005 to 0.036 ± 0.001 as the surface-area-weighted particle radius increased from 39 to 127 nm, resulting in an estimated l of 32 ± 6 nm. In contrast, γ(N2O5) on sodium chloride particles was independent of particle size, suggesting a near-surface reaction dominated the uptake of N2O5. Differences in the reactivity of the N2O5 intermediate, NO2(+), with water and chloride can explain the observed dependencies. These results allow for parameterizations in atmospheric models to determine a more robust population mean value of γ(N2O5) that accounts for the distribution of particle sizes.

10.
Environ Sci Technol ; 49(8): 4861-7, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25835033

RESUMEN

The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.


Asunto(s)
Aerosoles/análisis , Atmósfera/química , Compuestos de Azufre/análisis , Ritmo Circadiano , Océano Índico , Espectrometría de Masas , Océano Pacífico , Estaciones del Año
11.
Environ Sci Technol ; 48(19): 11178-86, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25207961

RESUMEN

The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-ß-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times greater on ammonium bisulfate (γ ∼ 0.05) than on ammonium sulfate (γ ≤ 1 × 10(-4)). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.7 × 10(8) M/atm). Suppression of γIEPOX was observed on particles containing both ammonium bisulfate and poly(ethylene glycol) (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0) but is greater than 25 h on less acidic particles (pH > 3). This work highlights the importance of aerosol acidity for accurately predicting the fate of IEPOX and anthropogenically influenced biogenic SOA formation.


Asunto(s)
Aerosoles/química , Butadienos/química , Compuestos Epoxi/química , Hemiterpenos/química , Pentanos/química , Ácidos/química , Atmósfera/química , Cinética , Agua/química
12.
Environ Sci Technol ; 48(3): 1618-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24387143

RESUMEN

The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl(-)/nNO3(-)). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl(-)/nNO3(-) mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas-particle interactions.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Cloruros/química , Óxidos de Nitrógeno/química , Monitoreo del Ambiente , Cinética , Modelos Teóricos
13.
Environ Sci Technol ; 47(14): 7633-43, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23750590

RESUMEN

Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 µg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.


Asunto(s)
Aerosoles , Aire/análisis , Biomasa , Incendios , California , Espectrometría de Masas
14.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783680

RESUMEN

The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

15.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35137057

RESUMEN

This study examined the water-to-air transfer and viability of the fecal indicator bacteria, enterococci, and compared capture performance of an impactor and aerosol filter. Results show that concentration of viable enterococci collected by the impactor (70.1 colony-forming units [CFU]/L) was lower than that using the filter (171.2 CFU/L) at 95% significance. Between the impactor and filter, coefficients of variation equaled 13% and 14%, respectively. Hence, for the collection of aerosolized enterococci in a controlled environment, use of the aerosol filter yielded significantly higher recovery relative to impaction, though equally variable data were collected by both methods. This work confirms that viable enterococci transfer across a simulated air-sea interface and that aerosol filters perform well in capturing viable bacteria. Results from this study are relevant to studies that measure environmentally generated aerosols such as those that occur via wave breaking from sewage-contaminated waters.


Asunto(s)
Bacterias , Enterococcus , Aerosoles
16.
Bull Am Meteorol Soc ; 0: 1-94, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34446943

RESUMEN

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.

17.
Toxins (Basel) ; 12(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322328

RESUMEN

Harmful algal blooms (HABs) are a rising health and environmental concern in the United States, particularly in South Florida. Skin contact and the ingestion of contaminated water or fish and other seafood have been proven to have severe toxicity to humans in some cases. However, the impact of aerosolized HAB toxins is poorly understood. In particular, knowledge regarding either the immediate or long-term effects of exposure to aerosolized cyanotoxins produced by freshwater blue-green algae does not exist. The aim of this study was to probe the toxicity of aerosolized cyanobacterial blooms using Drosophila melanogaster as an animal model. The exposure of aerosolized HABs at an early age leads to the most severe long-term impact on health and longevity among all age groups. Young groups and old males showed a strong acute response to HAB exposure. In addition, brain morphological analysis using fluorescence imaging reveals significant indications of brain degeneration in females exposed to aerosolized HABs in early or late stages. These results indicate that one-time exposure to aerosolized HAB particles causes a significant health risk, both immediately and in the long-term. Interestingly, age at the time of exposure plays an important role in the specific nature of the impact of aerosol HABs. As BMAA and microcystin have been found to be the significant toxins in cyanobacteria, the concentration of both toxins in the water and aerosols was examined. BMAA and microcystin are consistently detected in HAB waters, although their concentrations do not always correlate with the severity of the health impact, suggesting the potential contribution from additional toxins present in the aerosolized HAB. This study demonstrates, for the first time, the health risk of exposure to aerosolized HAB, and further highlights the critical need and importance of understanding the toxicity of aerosolized cyanobacteria HAB particles and determining the immediate and long-term health impacts of HAB exposure.


Asunto(s)
Envejecimiento/efectos de los fármacos , Floraciones de Algas Nocivas , Longevidad/efectos de los fármacos , Modelos Animales , Medición de Riesgo/métodos , Contaminación del Agua/efectos adversos , Aerosoles , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Drosophila , Femenino , Florida , Longevidad/fisiología , Masculino , Microcistinas/análisis , Microcistinas/toxicidad , Factores de Riesgo , Factores de Tiempo
18.
Environ Sci Technol ; 44(5): 1566-72, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20121235

RESUMEN

Dimethyl sulfide (DMS), produced by oceanic phytoplankton, is oxidized to form methanesulfonic acid (MSA) and sulfate, which influence particle chemistry and hygroscopicity. Unlike sulfate, MSA has no known anthropogenic source making it a useful tracer for ocean-derived biogenic sulfur. Despite numerous observations of MSA, predominately in marine environments, the production pathways of MSA have remained elusive highlighting the need for additional measurements, particularly at inland locations. During the Study of Organic Aerosols in Riverside, CA from July-August 2005, MSA was detected in submicrometer and supermicrometer particles using real-time, single-particle mass spectrometry. MSA was detected due to blooms of DMS-producing organisms along the California coast. The detection of MSA depended on both the origin of the sampled air mass as well as the concentration of oceanic chlorophyll present. MSA was mainly mixed with coastally emitted particle types implying that partitioning of MSA occurred before transport to Riverside. Importantly, particles containing vanadium had elevated levels of MSA compared to particles not containing vanadium, suggesting a possible catalytic role of vanadium in MSA formation. This study demonstrates how anthropogenic, metal-containing aerosols can enhance the atmospheric processing of biogenic emissions, which needs to be considered when modeling coastal as well as urban locations.


Asunto(s)
Polvo/análisis , Mesilatos/análisis , Fitoplancton/crecimiento & desarrollo , Población Urbana , Aerosoles/análisis , California , Clima , Humanos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA