RESUMEN
We describe our approach to addressing a nation-wide supply issue for blood culture bottles. Aerobic blood culture bottles received from our distributor July 1-15, 2024 was <1% of typical usage. Through education and ordering restrictions blood culture designed to minimize risk, orders were reduced by 49% over a one-week period.
RESUMEN
Encephalitis is a devastating neurologic disease often complicated by prolonged neurologic deficits. Best practices for the management of adult patients include universal testing for a core group of etiologies, including herpes simplex virus (HSV)-1, varicella zoster virus (VZV), enteroviruses, West Nile virus, and anti-N-methyl-D-aspartate receptor (anti-NMDAR) antibody encephalitis. Empiric acyclovir therapy should be started at presentation and in selected cases continued until a second HSV-1 polymerase chain reaction test is negative. Acyclovir dose can be increased for VZV encephalitis. Supportive care is necessary for other viral etiologies. Patients in whom no cause for encephalitis is identified represent a particular challenge. Management includes repeat brain magnetic resonance imaging, imaging for occult malignancy, and empiric immunomodulatory treatment for autoimmune conditions. Next-generation sequencing (NGS) or brain biopsy should be considered. The rapid pace of discovery regarding autoimmune encephalitis and the development of advanced molecular tests such as NGS have improved diagnosis and outcomes. Research priorities include development of novel therapeutics.
Asunto(s)
Encefalitis por Herpes Simple , Encefalitis , Herpesvirus Humano 1 , Enfermedades del Sistema Nervioso , Adulto , Humanos , Aciclovir/uso terapéutico , Herpesvirus Humano 3 , Encefalitis/diagnóstico , Encefalitis/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encefalitis por Herpes Simple/diagnóstico , Encefalitis por Herpes Simple/tratamiento farmacológicoRESUMEN
BACKGROUND: Prior observation has shown differences in COVID-19 hospitalization risk between SARS-CoV-2 variants, but limited information describes hospitalization outcomes. METHODS: Inpatients with COVID-19 at 5 hospitals in the eastern United States were included if they had hypoxia, tachypnea, tachycardia, or fever, and SARS-CoV-2 variant data, determined from whole-genome sequencing or local surveillance inference. Analyses were stratified by history of SARS-CoV-2 vaccination or infection. The average effect of SARS-CoV-2 variant on 28-day risk of severe disease, defined by advanced respiratory support needs, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. RESULTS: Severe disease or death within 28 days occurred for 977 (29%) of 3369 unvaccinated patients and 269 (22%) of 1230 patients with history of vaccination or prior SARS-CoV-2 infection. Among unvaccinated patients, the relative risk of severe disease or death for Delta variant compared with ancestral lineages was 1.30 (95% confidence interval [CI]: 1.11-1.49). Compared with Delta, the risk for Omicron patients was .72 (95% CI: .59-.88) and compared with ancestral lineages was .94 (.78-1.1). Among Omicron and Delta infections, patients with history of vaccination or prior SARS-CoV-2 infection had half the risk of severe disease or death (adjusted hazard ratio: .40; 95% CI: .30-.54), but no significant outcome difference by variant. CONCLUSIONS: Although risk of severe disease or death for unvaccinated inpatients with Omicron was lower than with Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated inpatients, with no difference between Delta and Omicron infections.
Asunto(s)
COVID-19 , Pacientes Internos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Vacunas contra la COVID-19RESUMEN
The field of clinical metagenomics for infectious disease diagnostics has advanced to combining questions of technical methodologies with best-use practices due to lowering barriers of implementation. This commentary identifies challenges facing further development of the field and proposes methods for advancement by highlighting a recent prospective pilot study evaluating a targeted metagenomic approach for infectious endocarditis. This commentary introduces the concept of operational value as a method for standardizing results generated by differing clinical metagenomic approaches. Operational value includes assessments of result quality, utility, and cost through incorporating methodological aspects of metagenomics as applied to various infectious syndromes, patient populations, and specimen types. Focus is placed on standardizing outcome-based metrics using an operational value matrix. As ambitions of clinical metagenomics are increasingly realized, new models of study design and collaboration could promote progress toward routine use and positive benefits for patients with infectious diseases.
Asunto(s)
Enfermedades Transmisibles , Metagenómica , Humanos , Metagenómica/métodos , Proyectos Piloto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MetagenomaRESUMEN
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.617.2 (Delta) displaced B.1.1.7 (Alpha) and is associated with increases in coronavirus disease 2019 (COVID-19) cases, greater transmissibility, and higher viral RNA loads, but data are lacking regarding the infectious virus load and antiviral antibody levels in the nasal tract. METHODS: Whole genome sequencing, cycle threshold (Ct) values, infectious virus, anti-SARS-CoV-2 immunoglobulin G (IgG) levels, and clinical chart reviews were combined to characterize SARS-CoV-2 lineages circulating in the National Capital Region between January and September 2021 and differentiate infections in vaccinated and unvaccinated individuals by the Delta, Alpha, and B.1.2 (the predominant lineage prior to Alpha) variants. RESULTS: The Delta variant displaced the Alpha variant to constitute 99% of the circulating lineages in the National Capital Region by August 2021. In Delta infections, 28.5% were breakthrough cases in fully vaccinated individuals compared to 4% in the Alpha infected cohort. Breakthrough infections in both cohorts were associated with comorbidities, but only Delta infections were associated with a significant increase in the median days after vaccination. More than 74% of Delta samples had infectious virus compared to <30% from the Alpha cohort. The recovery of infectious virus with both variants was associated with low levels of local SARS-CoV-2 IgG. CONCLUSIONS: Infection with the Delta variant was associated with more frequent recovery of infectious virus in vaccinated and unvaccinated individuals compared to the Alpha variant but was not associated with an increase in disease severity in fully vaccinated individuals. Infectious virus was correlated with the presence of low amounts of antiviral IgG in the nasal specimens.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Antivirales , Humanos , Inmunoglobulina G , SARS-CoV-2/genéticaRESUMEN
BACKGROUND: Pneumocystis jirovecii is an opportunistic fungus that causes Pneumocystis pneumonia (PCP) in immunocompromised hosts. Over an 11-month period, we observed a rise in cases of PCP among kidney-transplant recipients (KTR), prompting an outbreak investigation. METHODS: Clinical and epidemiologic data were collected for KTR diagnosed with PCP between July 2019 and May 2020. Pneumocystis strain typing was performed using restriction fragment length polymorphism analyses and multilocus sequence typing in combination with next-generation sequencing. A transmission map was drawn, and a case-control analysis was performed to determine risk factors associated with PCP. RESULTS: Nineteen cases of PCP in KTR were diagnosed at a median of 79 months post-transplantation; 8 received monthly belatacept infusions. Baseline characteristics were similar for KTR on belatacept versus other regimens; the number of clinic visits was numerically higher for the belatacept group during the study period (median 7.5 vs 3). Molecular typing of respiratory specimens from 9 patients revealed coinfection with up to 7 P. jirovecii strains per patient. A transmission map suggested multiple clusters of interhuman transmission. In a case-control univariate analysis, belatacept, lower absolute lymphocyte count, non-White race, and more transplant clinic visits were associated with an increased risk of PCP. In multivariate and prediction power estimate analyses, frequent clinic visits was the strongest risk factor for PCP. CONCLUSIONS: Increased clinic exposure appeared to facilitate multiple clusters of nosocomial PCP transmission among KTR. Belatacept was a risk factor for PCP, possibly by increasing clinic exposure through the need for frequent visits for monthly infusions.
Asunto(s)
Trasplante de Riñón , Pneumocystis carinii , Neumonía por Pneumocystis , Brotes de Enfermedades , Humanos , Trasplante de Riñón/efectos adversos , Tipificación de Secuencias Multilocus , Pneumocystis carinii/genética , Neumonía por Pneumocystis/microbiología , Receptores de Trasplantes , Estados Unidos/epidemiologíaRESUMEN
The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.
Asunto(s)
Trasplante de Órganos , Trasplantes , Humanos , Receptores de Trasplantes , Consenso , Trasplante de Órganos/efectos adversos , América del NorteRESUMEN
Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection of respiratory pathogens, although optimal approaches are not defined. This study evaluated the performance of the Respiratory Pathogen ID/AMR (RPIP) kit (Illumina, Inc.) with automated Explify bioinformatic analysis (IDbyDNA, Inc.), a targeted NGS workflow enriching specific pathogen sequences and antimicrobial resistance (AMR) markers, and a complementary untargeted metagenomic workflow with in-house bioinformatic analysis. Compared to a composite clinical standard consisting of provider-ordered microbiology testing, chart review, and orthogonal testing, both workflows demonstrated similar performances. The overall agreement for the RPIP targeted workflow was 65.6% (95% confidence interval, 59.2 to 71.5%), with a positive percent agreement (PPA) of 45.9% (36.8 to 55.2%) and a negative percent agreement (NPA) of 85.7% (78.1 to 91.5%). The overall accuracy for the metagenomic workflow was 67.1% (60.9 to 72.9%), with a PPA of 56.6% (47.3 to 65.5%) and an NPA of 77.2% (68.9 to 84.1%). The approaches revealed pathogens undetected by provider-ordered testing (Ureaplasma parvum, Tropheryma whipplei, severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], rhinovirus, and cytomegalovirus [CMV]), although not all pathogens detected by provider-ordered testing were identified by the NGS workflows. The RPIP targeted workflow required more time and reagents for library preparation but streamlined bioinformatic analysis, whereas the metagenomic assay was less demanding technically but required complex bioinformatic analysis. The results from both workflows were interpreted utilizing standardized criteria, which is necessary to avoid reporting nonpathogenic organisms. The RPIP targeted workflow identified AMR markers associated with phenotypic resistance in some bacteria but incorrectly identified blaOXA genes in Pseudomonas aeruginosa as being associated with carbapenem resistance. These workflows could serve as adjunctive testing with, but not as a replacement for, standard microbiology techniques.
Asunto(s)
COVID-19 , Enfermedades Transmisibles , Líquido del Lavado Bronquioalveolar/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenómica , SARS-CoV-2 , Flujo de TrabajoRESUMEN
Detection of SARS-CoV-2 viral RNA by RT-PCR assays is the primary diagnostic test for COVID-19. Cycle threshold (CT ) values generated by some of these assays provide inversely proportional proxy measurements of viral load. The clinical implications of CT values are incompletely characterized, particularly in solid organ transplant (SOT) recipients. We conducted a retrospective chart review of 25 adult SOT recipients admitted to the Yale New Haven Health System between March 1 and May 15, 2020, analyzing 50 test results to investigate the clinical implications of SARS-CoV-2 CT values in this population. Initial CT values from upper respiratory tract samples were significantly higher in patients on tacrolimus, but were not associated with admission severity nor highest clinical acuity. Viral RNA was detected up to 38 days from symptom onset with a gradual increase in CT values over time. In five patients with serial testing, CT values <35.0 were detected >21 days after symptom onset in 4/5 and ≥27 days in 2/5, demonstrating prolonged RNA detection. These data describe SARS-CoV-2 viral dynamics in SOT patients and suggest that CT values may not be useful to predict COVID-19 severity in SOT patients. SARS-CoV-2 CT values may be more useful in informing infection prevention measures.
Asunto(s)
COVID-19/virología , Trasplante de Órganos/métodos , Pandemias , SARS-CoV-2/fisiología , Receptores de Trasplantes , Carga Viral , Anticuerpos Antivirales/análisis , COVID-19/epidemiología , Comorbilidad , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , ARN Viral/análisis , Estudios RetrospectivosRESUMEN
Next-generation sequencing (NGS)-based assays are primarily available from reference laboratories for diagnostic use. These tests can provide helpful diagnostic data but also can be overused by ordering providers not fully understanding their limitations. At present, there are few best practice guidelines for use. NGS-based assays can carry a high cost to institutions and individual patients, requiring thoughtful use through application of diagnostic stewardship principles. This article provides an overview of diagnostic stewardship approaches as applied to these assays, focusing on principles of collaboration, differential diagnosis formation, and seeking the best patient, syndrome, sample, timing, and test for improved patient care.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas MicrobiológicasRESUMEN
Central nervous system (CNS) infections carry a substantial burden of morbidity and mortality worldwide, and accurate and timely diagnosis is required to optimize management. Metagenomic next-generation sequencing (mNGS) has proven to be a valuable tool in detecting pathogens in patients with suspected CNS infection. By sequencing microbial nucleic acids present in a patient's cerebrospinal fluid, brain tissue, or samples collected outside of the CNS, such as plasma, mNGS can detect a wide range of pathogens, including rare, unexpected, and/or fastidious organisms. Furthermore, its target-agnostic approach allows for the identification of both known and novel pathogens. This is particularly useful in cases where conventional diagnostic methods fail to provide an answer. In addition, mNGS can detect multiple microorganisms simultaneously, which is crucial in cases of mixed infections without a clear predominant pathogen. Overall, clinical mNGS testing can help expedite the diagnostic process for CNS infections, guide appropriate management decisions, and ultimately improve clinical outcomes. However, there are key challenges surrounding its use that need to be considered to fully leverage its clinical impact. For example, only a few specialized laboratories offer clinical mNGS due to the complexity of both the laboratory methods and analysis pipelines. Clinicians interpreting mNGS results must be aware of both false negatives-as mNGS is a direct detection modality and requires a sufficient amount of microbial nucleic acid to be present in the sample tested-and false positives-as mNGS detects environmental microbes and their nucleic acids, despite best practices to minimize contamination. Additionally, current costs and turnaround times limit broader implementation of clinical mNGS. Finally, there is uncertainty regarding the best practices for clinical utilization of mNGS, and further work is needed to define the optimal patient population(s), syndrome(s), and time of testing to implement clinical mNGS.
Asunto(s)
Infecciones del Sistema Nervioso Central , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Infecciones del Sistema Nervioso Central/diagnóstico , Infecciones del Sistema Nervioso Central/microbiología , Infecciones del Sistema Nervioso Central/líquido cefalorraquídeo , Metagenoma , Técnicas de Diagnóstico Molecular/métodosRESUMEN
Background: The Infectious Diseases Society of America (IDSA) developed the Core Antimicrobial Stewardship (AS) Curriculum to meet the increasing demand for infectious diseases (ID) providers with AS expertise. Notable diversity in implementation approaches has been observed among ID fellowship programs using the curriculum. We sought to describe individual approaches and develop a curriculum implementation roadmap. Methods: We surveyed ID fellowship programs that had previously implemented the IDSA Core AS curriculum. The survey included questions regarding program characteristics, curriculum participants and presentation format, resources and barriers, and implementation strategies. Commonly reported program features were summarized in the context of the self-reported implementation strategies. Implementation guides were developed based on the most common characteristics observed. Results: Of 159 programs that had purchased the curriculum, 37 responded, and 34 (21%) were included in the analysis. The curriculum was primarily taught by AS physicians (85%) and AS pharmacists (47%). The most common conference structure was a longitudinal conference series (32%), and eLearning was the most common presentation format. Limited AS faculty time (76%) and limited first-year fellow availability (62%) were frequently reported as barriers, and dedicated AS curricular time was a resource available to most programs (67%); implementation guides were created for these 3 program features. Conclusions: Programs reported a variety of implementation barriers and resources, with several common themes emerging, allowing for the development of tailored curriculum planners for 3 commonly observed program characteristics. This work will equip fellowship programs with curriculum implementation strategies and guide future enhancements of the IDSA Core and Advanced AS curricula.