Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Genomics ; 17: 130, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912237

RESUMEN

BACKGROUND: Delayed or secondary cell death that is caused by a cascade of cellular and molecular processes initiated by traumatic brain injury (TBI) may be reduced or prevented if an effective neuroprotective strategy is employed. Microarray and subsequent bioinformatic analyses were used to determine which genes, pathways and networks were significantly altered 24 h after unilateral TBI in the rat. Ipsilateral hemi-brain, the corresponding contralateral hemi-brain, and naïve (control) brain tissue were used for microarray analysis. RESULTS: Ingenuity Pathway Analysis showed cell death and survival (CD) to be a top molecular and cellular function associated with TBI on both sides of the brain. One major finding was that the overall gene expression pattern suggested an increase in CD genes in ipsilateral brain tissue and suppression of CD genes contralateral to the injury which may indicate an endogenous protective mechanism. We created networks of genes of interest (GOI) and ranked the genes by the number of direct connections each had in the GOI networks, creating gene interaction hierarchies (GIHs). Cell cycle was determined from the resultant GIHs to be a significant molecular and cellular function in post-TBI CD gene response. CONCLUSIONS: Cell cycle and apoptosis signalling genes that were highly ranked in the GIHs and exhibited either the inverse ipsilateral/contralateral expression pattern or contralateral suppression were identified and included STAT3, CCND1, CCND2, and BAX. Additional exploration into the remote suppression of CD genes may provide insight into neuroprotective mechanisms that could be used to develop therapies to prevent cell death following TBI.


Asunto(s)
Lesiones Encefálicas/genética , Ciclo Celular/genética , Muerte Celular/genética , Epistasis Genética , Redes Reguladoras de Genes , Animales , Apoptosis , Encéfalo/fisiopatología , Ciclina D1/genética , Ciclina D2/genética , Masculino , Análisis por Micromatrices , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Proteína X Asociada a bcl-2/genética
2.
J Neuroinflammation ; 12: 64, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25880399

RESUMEN

BACKGROUND: Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. METHODS: We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. CONCLUSION: Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/uso terapéutico , Encefalitis/inducido químicamente , Isoflurofato/toxicidad , Neurregulina-1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraarteriales , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero , Ratas , Ratas Sprague-Dawley
3.
BMC Genomics ; 14: 282, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23617241

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24 h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and naïve (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI. RESULTS: Inspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH. CONCLUSIONS: Bioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development.


Asunto(s)
Lesiones Encefálicas/genética , Perfilación de la Expresión Génica , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Biología Computacional , Redes Reguladoras de Genes , Inflamación/genética , Masculino , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley
4.
Biochem Biophys Res Commun ; 377(2): 556-561, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18930027

RESUMEN

The Purkinje cell degeneration (PCD) mutant mouse is characterized by a degeneration of cerebellar Purkinje cells and progressive ataxia. To identify the molecular mechanisms that lead to the death of Purkinje neurons in PCD mice, we used Affymetrix microarray technology to compare cerebellar gene expression profiles in pcd3J mutant mice 14 days of age (prior to Purkinje cell loss) to unaffected littermates. Microarray analysis, Ingenuity Pathway Analysis (IPA) and expression analysis systematic explorer (EASE) software were used to identify biological and molecular pathways implicated in the progression of Purkinje cell degeneration. IPA analysis indicated that mutant pcd3J mice showed dysregulation of specific processes that may lead to Purkinje cell death, including several molecules known to control neuronal apoptosis such as Bad, CDK5 and PTEN. These findings demonstrate the usefulness of these powerful microarray analysis tools and have important implications for understanding the mechanisms of selective neuronal death and for developing therapeutic strategies to treat neurodegenerative disorders.


Asunto(s)
Apoptosis/genética , Perfilación de la Expresión Génica , Células de Purkinje/metabolismo , Transcripción Genética , Animales , Ratones , Ratones Mutantes , Análisis de Secuencia por Matrices de Oligonucleótidos , Células de Purkinje/citología
5.
Brain Res ; 1210: 39-47, 2008 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-18410912

RESUMEN

We previously showed that neuregulin-1 (NRG-1) protected neurons from death in vivo following focal ischemia. The goal of this study was to develop an in vitro rat ischemia model to examine the cellular and molecular mechanisms involved in the neuroprotective effects of NRG-1 on ischemia-induced neuronal death. Rat B-35 neuroblastoma cells differentiated by serum withdrawal, developed enhanced neuronal characteristics including, neurite extension and upregulation of neuronal markers of differentiation. When B35 neurons were subjected to oxygen glucose deprivation (OGD)/reoxygenation or glutamate, widespread neuronal death was seen after both treatments. Treatment with NRG-1 immediately after OGD significantly increased neuronal survival. NRG-1 administration also resulted in a significant decrease in annexin V, an early marker of apoptosis. However, the neurotoxic actions of glutamate were unaffected by NRG-1. The neuroprotective effects of NRG-1 were prevented by an inhibitor of the phosphatidylinositol-3-kinase/Akt pathway. These results provide a new model to gain insight into the mechanisms employed by NRG-1 to protect neurons from ischemic brain injury.


Asunto(s)
Infarto Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Citoprotección/efectos de los fármacos , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/farmacología , Neuronas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/fisiopatología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citoprotección/fisiología , Inhibidores Enzimáticos/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Modelos Biológicos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Neurregulina-1 , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Brain Res ; 1071(1): 226-36, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16409990

RESUMEN

To gain greater insight on the molecular mechanisms that underlie ischemic stroke, we compared gene expression profiles in transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) stroke models using Expression Analysis Systematic Explorer (EASE) pathway analysis software. Many transcripts were induced in both stroke models, including genes associated with transcriptional pathways, cell death, stress responses and metabolism. However, EASE analysis of the regulated genes indicated molecular functions and biological processes unique to each model. Pathways associated with tMCAO included inflammation, apoptosis and cell cycle, while pMCAO was associated with the induction of genes encoding neurotransmitter receptors, ion channels, growth factors and signaling molecules. An intriguing finding was the involvement of tyrosine kinases and phosphatases following pMCAO. These results provide evidence that neuronal death following tMCAO and pMCAO involves distinct mechanisms. These findings may give new insight to the molecular mechanisms involved in stroke and may lead to novel neuroprotective strategies.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Expresión Génica/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Northern Blotting/métodos , Análisis por Conglomerados , Modelos Animales de Enfermedad , Masculino , Análisis por Micromatrices/métodos , Modelos Biológicos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
7.
Comp Med ; 62(5): 427-38, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23114047

RESUMEN

The goal of this study was to characterize acute neuronal injury in a novel nonhuman primate (NHP) ischemic stroke model by using multiple outcome measures. Silk sutures were inserted into the M1 segment of the middle cerebral artery of rhesus macaques to achieve permanent occlusion of the vessel. The sutures were introduced via the femoral artery by using endovascular microcatheterization techniques. Within hours after middle cerebral artery occlusion (MCAO), infarction was detectable by using diffusion-weighted MRI imaging. The infarcts expanded by 24 h after MCAO and then were detectable on T2-weighted images. The infarcts seen by MRI were consistent with neuronal injury demonstrated histologically. Neurobehavioral function after MCAO was determined by using 2 neurologic testing scales. Neurologic assessments indicated that impairment after ischemia was limited to motor function in the contralateral arm; other neurologic and behavioral parameters were largely unaffected. We also used microarrays to examine gene expression profiles in peripheral blood mononuclear cells after MCAO-induced ischemia. Several genes were altered in a time-dependent manner after MCAO, suggesting that this ischemia model may be suitable for identifying blood biomarkers associated with the presence and severity of ischemia. This NHP stroke model likely will facilitate the elucidation of mechanisms associated with acute neuronal injury after ischemia. In addition, the ability to identify candidate blood biomarkers in NHP after ischemia may prompt the development of new strategies for the diagnosis and treatment of ischemic stroke in humans.


Asunto(s)
Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Trastornos Psicomotores/patología , Accidente Cerebrovascular/patología , Animales , Western Blotting , Cateterismo , Citocinas/metabolismo , Técnicas de Diagnóstico Neurológico , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Técnicas Histológicas , Leucocitos Mononucleares/metabolismo , Macaca mulatta , Imagen por Resonancia Magnética , Análisis por Micromatrices , Neuronas/patología , Trastornos Psicomotores/etiología , Accidente Cerebrovascular/sangre
8.
J Neurochem ; 96(2): 510-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16336219

RESUMEN

Oxidative stress has been implicated in impairing muscarinic acetylcholine receptor (mAChR) signaling activity. It remains unclear, however, whether alterations in the cell surface distribution of mAChRs following oxidative stress contribute to the diminished mAChR signaling activity. We report here that M1 and M2 mAChRs, stably expressed in Chinese hamster ovary cells, undergo sequestration following transient hypoxic-induced oxidative stress (2% O2). Sequestration of M1 and M2 mAChRs following transient hypoxia was associated with an increase in phosphorylation of these receptors. Over-expression of a catalytically inactive G protein-coupled receptor kinase 2 (GRK2 K220R) blocked the increased phosphorylation and sequestration of the M2, but not M1, mAChRs following transient hypoxia. Hypoxia induced phosphorylation and sequestration of the M1 mAChR was, however, blocked by over-expression of a catalytically inactive casein kinase 1 alpha (CK1alpha K46R). These results are the first demonstration that M1 and M2 mAChRs undergo sequestration following transient hypoxia. The data suggest that increased phosphorylation of M1 and M2 mAChRs underlies the mechanism responsible for sequestration of these receptors following transient hypoxia. We report here that distinct pathways involving CK1alpha and GRK2 mediated sequestration of M1 and M2 mAChRs following transient hypoxic-induced oxidative stress.


Asunto(s)
Hipoxia/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Animales , Células CHO , Quinasa de la Caseína I/metabolismo , Muerte Celular , Cricetinae , Cricetulus , Humanos , Ligandos , Estrés Oxidativo , Fosforilación , Proteínas/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M2/genética , Factores de Tiempo , Quinasas de Receptores Adrenérgicos beta/metabolismo
9.
J Mol Signal ; 1: 7, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17224084

RESUMEN

BACKGROUND: Muscarinic acetylcholine receptors (mAChRs) undergo agonist-promoted internalization, but evidence suggesting that the mechanism of internalization is beta-arrestin dependent has been contradictory and unclear. Previous studies using heterologous over-expression of wild type or dominant-negative forms of beta-arrestins have reported that agonist-promoted internalization of M2 mAChRs is a beta-arrestin- and clathrin-independent phenomenon. In order to circumvent the complications associated with the presence of endogenous beta-arrestin that may have existed in these earlier studies, we examined agonist-promoted internalization of the M2 mAChR in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin knockout mice that lack expression of either one or both isoforms of beta-arrestin (beta-arrestin 1 and 2). RESULTS: In wild type MEF cells transiently expressing M2 mAChRs, 40% of surface M2 mAChRs underwent internalization and sorted into intracellular compartments following agonist stimulation. In contrast, M2 mAChRs failed to undergo internalization and sorting into intracellular compartments in MEF beta-arrestin double knockout cells following agonist stimulation. In double knockout cells, expression of either beta-arrestin 1 or 2 isoforms resulted in rescue of agonist-promoted internalization. Stimulation of M2 mAChRs led to a stable co-localization with GFP-tagged beta-arrestin within endocytic structures in multiple cell lines; the compartment to which beta-arrestin localized was determined to be the early endosome. Agonist-promoted internalization of M2 mAChRs was moderately rescued in MEF beta-arrestin 1 and 2 double knockout cells expressing exogenous arrestin mutants that were selectively defective in interactions with clathrin (beta-arrestin 2 DeltaLIELD), AP-2 (beta-arrestin 2-F391A), or both clathrin/AP-2. Expression of a truncated carboxy-terminal region of beta-arrestin 1 (319-418) completely abrogated agonist-promoted internalization of M2 mAChRs in wild type MEF cells. CONCLUSION: In summary, this study demonstrates that agonist-promoted internalization of M2 mAChRs is beta-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with beta-arrestin in early endosomal vesicles.

10.
Neurobiol Dis ; 19(3): 461-70, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16023588

RESUMEN

Neuregulins are a family of growth factors with potent neuroprotective properties. We recently demonstrated that neuregulin-1 blocked delayed neuronal death following focal ischemic stroke in the rat. Focal ischemia results in the release of pro-inflammatory cytokines that produce profound changes in gene expression and contribute to cell death associated with stroke. Inflammatory and stress mediators are involved in the pathogenesis of focal ischemic brain damage. We examined whether neuregulin-1 can influence inflammatory and stress gene expression in the rat brain following transient middle cerebral artery occlusion (MCAO). In this study, we compared gene expression profiles in animals treated with neuregulin-1beta (NRG-1) or vehicle followed by MCAO. We used the Affymetrix GeneChip system to analyze gene expression in focal ischemia of the rat brain. Several inflammatory and stress genes were significantly induced following MCAO compared to sham controls including heat shock protein-70 (HSP70), interleukin-1beta, and macrophage chemotattractant protein-1 (JE/MCP-1). Treatment with NRG-1 attenuated the expression of many of these genes by 50% or more. In vitro studies demonstrated that NRG-1 suppressed inflammatory gene expression in activated macrophages. NRG-1 also prevented neuronal death induced by oxygen-glucose deprivation in a rat neuroblastoma cell line, suggesting that NRG-1 may have both direct and indirect neuroprotective capacity. These results demonstrate that NRG-1 can regulate inflammatory and stress gene expression and may give new insight to the molecular mechanisms involved in the neuroprotective role of neuregulins in stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Expresión Génica , Infarto de la Arteria Cerebral Media/complicaciones , Neurregulina-1/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Células Cultivadas , Perfilación de la Expresión Génica , Hibridación in Situ , Inflamación/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Modelos Neurológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA