Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 197(3): 923-33, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342840

RESUMEN

Type I IFN induction is critical for antiviral and anticancer defenses. Proper downregulation of type I IFN is equally important to avoid deleterious imbalances in the immune response. The cellular FLIP long isoform protein (cFLIPL) controls type I IFN production, but opposing publications show it as either an inhibitor or inducer of type I IFN synthesis. Regardless, the mechanistic basis for cFLIPL regulation is unknown. Because cFLIPL is important in immune cell development and proliferation, and is a target for cancer therapies, it is important to identify how cFLIPL regulates type I IFN production. Data in this study show that cFLIPL inhibits IFN regulatory factor 3 (IRF3), a transcription factor central for IFN-ß and IFN-stimulated gene expression. This inhibition occurs during virus infection, cellular exposure to polyinosinic-polycytidylic acid, or TBK1 overexpression. This inhibition is independent of capase-8 activity. cFLIPL binds to IRF3 and disrupts IRF3 interaction with its IFN-ß promoter and its coactivator protein (CREB-binding protein). Mutational analyses reveal that cFLIPL nuclear localization is necessary and sufficient for inhibitory function. This suggests that nuclear cFLIPL prevents IRF3 enhanceosome formation. Unlike other cellular IRF3 inhibitors, cFLIPL did not degrade or dephosphorylate IRF3. Thus, cFLIPL represents a different cellular strategy to inhibit type I IFN production. This new cFLIPL function must be considered to accurately understand how cFLIPL affects immune system development and regulation.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Fragmentos de Péptidos/metabolismo , Sialoglicoproteínas/metabolismo , Línea Celular , Humanos , Immunoblotting , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Transducción de Señal , Transcripción Genética
2.
BMC Microbiol ; 14: 41, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533573

RESUMEN

BACKGROUND: Coxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years. RESULTS: We detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8). CONCLUSIONS: The high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes.


Asunto(s)
Coxiella burnetii/clasificación , Coxiella burnetii/genética , Variación Genética , Leche/microbiología , Tipificación Molecular/métodos , Fiebre Q/veterinaria , Animales , Bovinos , Coxiella burnetii/aislamiento & purificación , Genotipo , Cabras , Epidemiología Molecular , Prevalencia , Fiebre Q/microbiología , Estados Unidos/epidemiología
3.
PLoS One ; 6(11): e26201, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073151

RESUMEN

Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels) among multispacer sequence typing (MST) loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies.


Asunto(s)
Coxiella burnetii/clasificación , Secuencia de Bases , Coxiella burnetii/genética , Coxiella burnetii/aislamiento & purificación , Cartilla de ADN , Genes Bacterianos , Geografía , Filogenia , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA