RESUMEN
Magnetic topological defects, such as vortices and Skyrmions, can be stabilized as equilibrium structures in nanoscale geometries and by tailored intrinsic magnetic interactions. Here, employing rapid quench conditions, we report the observation of a light-induced metastable magnetic texture, which consists of a dense nanoscale network of vortices and antivortices. Our results demonstrate the emergence of ordering mechanisms in quenched optically driven systems, which may give a general access to novel magnetic structures on nanometer length scales.
RESUMEN
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams.