Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 118(1): 56-72, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26503464

RESUMEN

RATIONALE: More than 25 million individuals have heart failure worldwide, with ≈4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only ≈2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. OBJECTIVE: The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. METHODS AND RESULTS: To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. CONCLUSIONS: Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.


Asunto(s)
Bioingeniería/métodos , Matriz Extracelular/fisiología , Miocardio/citología , Células Madre Pluripotentes/fisiología , Adulto , Anciano , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
2.
Am J Pathol ; 182(1): 277-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159527

RESUMEN

Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed. The effect of adjunctive diet-induced obesity was defined. Flowmetry, wall strain analyses, biomicroscopy, and histology were completed. LCA blood flow sharply decreased by ∼85%, followed by a responsive right carotid artery increase of ∼71%. Circumferential strain decreased by ∼2.1% proximal to the stenosis in both dietary groups. At 28 days, morphologic adaptations included proximal LCA intimal hyperplasia, which was exacerbated by diet-induced obesity. The proximal and distal LCA underwent outward and negative inward remodeling, respectively, in the mid-focal stenosis (remodeling indexes, 1.10 and 0.53). A simple, defined common carotid focal stenosis yields reproducible murine intimal hyperplasia and substantial differentials in arterial wall adaptations. This model offers a tool for investigating mechanisms of hemodynamically driven intimal hyperplasia and arterial wall remodeling.


Asunto(s)
Arteria Carótida Común/patología , Estenosis Carotídea/patología , Modelos Animales de Enfermedad , Túnica Íntima/patología , Adaptación Fisiológica/fisiología , Animales , Arteria Carótida Común/fisiopatología , Estenosis Carotídea/etiología , Estenosis Carotídea/fisiopatología , Endotelio Vascular/patología , Hiperplasia/etiología , Hiperplasia/patología , Hiperplasia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/patología , Obesidad/complicaciones , Flujo Sanguíneo Regional , Estrés Fisiológico
3.
J Vasc Surg ; 60(5): 1340-1347, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24139980

RESUMEN

OBJECTIVE: Intimal hyperplasia (IH) continues to plague the durability of vascular interventions. Employing a validated murine model, ultrasound biomicroscopy, and speckle-tracking algorithms, we tested the hypothesis that reduced cyclic arterial wall strain results in accentuated arterial wall IH. METHODS: A 9-0 suture was tied around the left mouse (n = 10) common carotid artery and a 35-gauge (outer diameter = 0.14 mm) blunt mandrel. We previously showed that mandrel removal results in a ∼78% reduction in diameter and ∼85% reduction in flow, with subsequent delayed induction of IH by day 28. Preoperative, postoperative day-4 (before measurable IH), and postoperative day-27 circumferential wall strains were measured in locations 1, 2, and 3 mm proximal to the stenosis and in the same locations on the contralateral (nonstenosed) carotid. At postoperative day 28, arteries were perfusion fixed and arterial wall morphology was assessed microscopically in the same regions. RESULTS: Strains were the same in all locations preoperatively. Wall strain was decreased in all regions proximal to the stenosis by day 4 (0.26 ± 0.01 to 0.11 ± 0.02; P < .001), while strains remained unchanged for the contralateral artery (P = .45). No statistical regional differences in mean strain or IH were noted at any time point for the experimental or contralateral artery. Based on the median, regions were divided into those with low strain (≤0.1) and high strain (>0.1). Average preoperative strains in both groups were the same (0.27 ± 0.09 and 0.27 ± 0.08). All segments in the low-strain group (n = 13) demonstrated significant IH formation by day 28, while only 31% of the high strain group demonstrated any detectable IH at day 28. (Mean low-strain intimal thickness = 32 ± 20 µm, high strain = 8.0 ± 16 µm; P < .01). Changes in cross-sectional area at diastole drove the reduction in strain in the low-strain group, increasing significantly from preoperatively to day 4 (P = .04), while lumen cross-section at systole remained unchanged (P = .46). Cross-sectional area at diastole and systole in the high-strain group remained unchanged from preoperatively to day 4 (P = .67). CONCLUSIONS: Early reduction in arterial wall strain is associated with subsequent development of hemodynamically induced IH.


Asunto(s)
Arteria Carótida Común/fisiopatología , Estenosis Carotídea/fisiopatología , Hemodinámica , Neointima , Animales , Velocidad del Flujo Sanguíneo , Arteria Carótida Común/diagnóstico por imagen , Arteria Carótida Común/patología , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/patología , Modelos Animales de Enfermedad , Hiperplasia , Masculino , Ratones Endogámicos C57BL , Microscopía Acústica , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo
4.
Am J Physiol Lung Cell Mol Physiol ; 304(1): L4-16, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23125251

RESUMEN

Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.


Asunto(s)
Músculo Liso/citología , Sistema Respiratorio/citología , Técnicas de Cultivo de Tejidos/métodos , Animales , Asma/fisiopatología , Técnicas de Cocultivo , Expresión Génica , Humanos , Ratones , Modelos Biológicos , Contracción Muscular/fisiología , Células 3T3 NIH , Estrés Mecánico , Ingeniería de Tejidos/métodos
5.
J Biomed Mater Res A ; 111(9): 1309-1321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36932841

RESUMEN

Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Ingeniería de Tejidos/métodos , Fibrina , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio , Insuficiencia Cardíaca/metabolismo , Andamios del Tejido
6.
ACS Biomater Sci Eng ; 9(5): 2292-2300, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37126371

RESUMEN

The edible nature of many plants makes leaves particularly useful as scaffolds for the development of cultured meat, where animal tissue is grown in the laboratory setting. Recently, we demonstrated that decellularized spinach leaves can serve as scaffolds to grow and differentiate cells for cultured meat products. However, conventional decellularization methods use solutions that are not considered safe for use in food, such as organic solvents (hexanes) and detergents (triton X-100 (TX100)). This study modified decellularization protocols to incorporate detergents that are regulated (REG) by the United States Food and Drug Administration (FDA) for use in food, such as Polysorbate 20 (PS20), and eliminates the use of hexanes for cuticle removal. Spinach leaves were decellularized with sodium dodecyl sulfate and then with either TX100 (control) or PS20. The average DNA content for TX100 samples and PS20 samples was similar (1.3 ± 0.07 vs 1.3 ± 0.05 ng/mg; TX100 vs PS20, p = ns). The importance of cuticle removal was tested by removing hexanes from the protocol. Groups that included the cuticle removal step exhibited an average reduction in DNA content of approximately 91.7%, and groups that omitted the cuticle removal step exhibited an average reduction of approximately 90.3% (p = ns), suggesting that the omission of the cuticle removal step did not impede decellularization. Lastly, primary bovine satellite cells (PBSCs) were cultured for 7 days (d) on the surface of spinach leaves decellularized using the REG protocol. After the 7 d incubation period, PBSCs grown on the surface of REG scaffolds had an average viability of approximately 97.4%. These observations suggest that the REG protocol described in this study is an effective decellularization method, more closely adhering to food safety guidelines, that could be implemented in lab grown meat and alternative protein products.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Bovinos , Ingeniería de Tejidos/métodos , Detergentes/farmacología , Hexanos/farmacología , Matriz Extracelular , Octoxinol/farmacología , ADN/farmacología
7.
J Vasc Surg ; 56(2): 462-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22503226

RESUMEN

OBJECTIVE: The underlying causes of abdominal aortic aneurysms (AAAs) remain obscure, although research tools such as the angiotensin II (Ang II) apolipoprotein E-deficient (apoE(-/-)) mouse model have aided investigations. Longitudinal imaging and determination of biomechanical forces in this small-scale model have been difficult. We hypothesized that high-frequency ultrasound biomicroscopy combined with speckle-tracking analytical strategies can be used to define the role of circumferential mechanical strain in AAA formation in the Ang II/apoE(-/-) mouse model of AAAs. We simultaneously examined dietary perturbations that might impact the biomechanical properties of the aortic wall, hypothesizing that the generalized inflammatory phenotype associated with diet-induced obesity would be associated with accelerated loss of circumferential strain and aneurysmal aortic degeneration. METHODS: Receiving either a 60 kcal% fat Western diet or standard 10 kcal% fat normal chow, Ang II-treated apoE(-/-) mice (n = 34) underwent sequential aortic duplex ultrasound scan imaging (Vevo 2100 System; VisualSonics, Toronto, Ontario, Canada) of their entire aorta. Circumferential strains were calculated using speckle-tracking algorithms and a custom MatLab analysis. RESULTS: Decreased strains in all aortic locations after just 3 days of Ang II treatment were observed, and this effect progressed during the 4-week observation period. Anatomic segments along the aorta impacted wall strain (baseline highest in ascending aorta; P < .05), whereas diet did not. At 2 and 4 weeks, there was the largest progressive decrease in strain in the paravisceral/supraceliac aorta (P < .05), which was the segment most likely to be involved in aneurysm formation in this model. CONCLUSIONS: In the Ang II/apoE(-/-) aneurysm model, the aorta significantly stiffens (with decreased strain) shortly after Ang II infusion, and this progressively continues through the next 4 weeks. High-fat feeding did not have an impact on wall strain. Delineation of biomechanical factors and AAA morphology via duplex scan and speckle-tracking algorithms in mouse models should accelerate insights into human AAAs.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/fisiopatología , Modelos Animales de Enfermedad , Microscopía Acústica , Ultrasonografía Doppler Dúplex , Animales , Fenómenos Biomecánicos , Grasas de la Dieta/administración & dosificación , Progresión de la Enfermedad , Masculino , Ratones , Estrés Mecánico
8.
Crit Rev Eukaryot Gene Expr ; 20(1): 35-50, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20528736

RESUMEN

Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.


Asunto(s)
Enfermedad Coronaria/terapia , Corazón/fisiología , Células Musculares/fisiología , Regeneración/fisiología , Adulto , Médula Ósea/fisiología , Trasplante de Médula Ósea/métodos , Cardiomioplastia/métodos , Diferenciación Celular , División Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/mortalidad , Células Madre Embrionarias/trasplante , Terapia Genética , Corazón/fisiopatología , Cardiopatías/genética , Cardiopatías/cirugía , Cardiopatías/terapia , Humanos , Células Musculares/citología , Mioblastos/trasplante , Miocitos Cardíacos/citología , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/trasplante , Medicina Regenerativa/métodos , Trasplante de Células Madre
9.
J Biomed Mater Res A ; 108(10): 2123-2132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32323417

RESUMEN

Myocardial infarction (MI) results in the death of cardiac tissue, decreases regional contraction, and can lead to heart failure. Tissue engineered cardiac patches containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) can restore contractile function. However, cells within thick patches require vasculature for blood flow. Recently, we demonstrated fibronectin coated decellularized leaves provide a suitable scaffold for hiPS-CMs. Yet, the necessity of this additional coating step is unclear. Therefore, we compared hiPS-CM behavior on decellularized leaves coated with collagen IV or fibronectin extracellular matrix (ECM) proteins to noncoated leaves for up to 21 days. Successful coating was verified by immunofluorescence. Similar numbers of hiPS-CMs adhered to coated and noncoated decellularized leaves for 21 days. At Day 14, collagen IV coated leaves contracted more than noncoated leaves (3.25 ± 0.39% vs. 1.54 ± 0.60%; p < .05). However, no differences in contraction were found between coated leaves, coated tissue culture plastic (TCP), noncoated leaves, or noncoated TCP at other time points. No significant differences were observed in hiPS-CM spreading or sarcomere lengths on leaves with or without coating. This study demonstrates that cardiac scaffolds can be created from decellularized leaves without ECM coatings. Noncoated decellularized leaf surfaces facilitate robust cell attachment for an engineered tissue patch.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Hojas de la Planta/química , Spinacia oleracea/química , Andamios del Tejido/química , Materiales Biocompatibles/química , Diferenciación Celular , Línea Celular , Proteínas de la Matriz Extracelular/química , Humanos , Infarto del Miocardio/terapia , Ingeniería de Tejidos/métodos
10.
Tissue Eng Part A ; 26(9-10): 543-555, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31663421

RESUMEN

Current reconstruction methods of the laryngotracheal segment fail to replace the complex functions of the human larynx. Bioengineering approaches to reconstruction have been limited by the complex tissue compartmentation of the larynx. We attempted to overcome this limitation by bioengineering laryngeal grafts from decellularized canine laryngeal scaffolds recellularized with human primary cells under one uniform culture medium condition. First, we developed laryngeal scaffolds which were generated by detergent perfusion-decellularization over 9 days and preserved their glycosaminoglycan content and biomechanical properties of a native larynx. After subcutaneous implantations in rats for 14 days, the scaffolds did not elicit a CD3 lymphocyte response. We then developed a uniform culture medium that strengthened the endothelial barrier over 5 days after an initial growth phase. Simultaneously, this culture medium supported airway epithelial cell and skeletal myoblast growth while maintaining their full differentiation and maturation potential. We then applied the uniform culture medium composition to whole laryngeal scaffolds seeded with endothelial cells from both carotid arteries and external jugular veins and generated reendothelialized arterial and venous vascular beds. Under the same culture medium, we bioengineered epithelial monolayers onto laryngeal mucosa and repopulated intrinsic laryngeal muscle. We were then able to demonstrate early muscle formation in an intramuscular transplantation model in immunodeficient mice. We supported formation of three humanized laryngeal tissue compartments under one uniform culture condition, possibly a key factor in developing complex, multicellular, ready-to-transplant tissue grafts. Impact Statement For patients undergoing laryngectomy, no reconstruction methods are available to restore the complex functions of the human larynx. The first promising preclinical results have been achieved with the use of biological scaffolds fabricated from decellularized tissue. However, the complexity of laryngeal tissue composition remains a hurdle to create functional viable grafts, since previously each cell type requires tailored culture conditions. In this study, we report the de novo formation of three humanized laryngeal tissue compartments under one uniform culture condition, a possible keystone in creating vital composite tissue grafts for laryngeal regeneration.


Asunto(s)
Músculos Laríngeos/citología , Laringe/citología , Andamios del Tejido/química , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Perros , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones SCID , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-30838213

RESUMEN

The first successful heart transplant 50 years ago by Dr.Christiaan Barnard in Cape Town, South Africa revolutionized cardiovascular medicine and research. Following this procedure, numerous other advances have reduced many contributors to cardiovascular morbidity and mortality; yet, cardiovascular disease remains the leading cause of death globally. Various unmet needs in cardiovascular medicine affect developing and underserved communities, where access to state-of-the-art advances remain out of reach. Addressing the remaining challenges in cardiovascular medicine in both developed and developing nations will require collaborative efforts from basic science researchers, engineers, industry, and clinicians. In this perspective, we discuss the advancements made in cardiovascular medicine since Dr. Barnard's groundbreaking procedure and ongoing research efforts to address these medical issues. Particular focus is given to the mission of the International Society for Applied Cardiovascular Biology (ISACB), which was founded in Cape Town during the 20th celebration of the first heart transplant in order to promote collaborative and translational research in the field of cardiovascular medicine.

12.
Front Cardiovasc Med ; 5: 52, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942806

RESUMEN

Stem cell therapy has the potential to regenerate cardiac function after myocardial infarction. In this study, we sought to examine if fibrin microthread technology could be leveraged to develop a contractile fiber from human pluripotent stem cell derived cardiomyocytes (hPS-CM). hPS-CM seeded onto fibrin microthreads were able to adhere to the microthread and began to contract seven days after initial seeding. A digital speckle tracking algorithm was applied to high speed video data (>60 fps) to determine contraction behaviour including beat frequency, average and maximum contractile strain, and the principal angle of contraction of hPS-CM contracting on the microthreads over 21 days. At day 7, cells seeded on tissue culture plastic beat at 0.83 ± 0.25 beats/sec with an average contractile strain of 4.23±0.23%, which was significantly different from a beat frequency of 1.11 ± 0.45 beats/sec and an average contractile strain of 3.08±0.19% at day 21 (n = 18, p < 0.05). hPS-CM seeded on microthreads beat at 0.84 ± 0.15 beats/sec with an average contractile strain of 3.56±0.22%, which significantly increased to 1.03 ± 0.19 beats/sec and 4.47±0.29%, respectively, at 21 days (n = 18, p < 0.05). At day 7, 27% of the cells had a principle angle of contraction within 20 degrees of the microthread, whereas at day 21, 65% of hPS-CM were contracting within 20 degrees of the microthread (n = 17). Utilizing high speed calcium transient data (>300 fps) of Fluo-4AM loaded hPS-CM seeded microthreads, conduction velocities significantly increased from 3.69 ± 1.76 cm/s at day 7 to 24.26 ± 8.42 cm/s at day 21 (n = 5-6, p < 0.05). hPS-CM seeded microthreads exhibited positive expression for connexin 43, a gap junction protein, between cells. These data suggest that the fibrin microthread is a suitable scaffold for hPS-CM attachment and contraction. In addition, extended culture allows cells to contract in the direction of the thread, suggesting alignment of the cells in the microthread direction.

13.
J Vis Exp ; (135)2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29912197

RESUMEN

The autologous, synthetic, and animal-derived grafts currently used as scaffolds for tissue replacement have limitations due to low availability, poor biocompatibility, and cost. Plant tissues have favorable characteristics that make them uniquely suited for use as scaffolds, such as high surface area, excellent water transport and retention, interconnected porosity, preexisting vascular networks, and a wide range of mechanical properties. Two successful methods of plant decellularization for tissue engineering applications are described here. The first method is based on detergent baths to remove cellular matter, which is similar to previously established methods used to clear mammalian tissues. The second is a detergent-free method adapted from a protocol that isolates leaf vasculature and involves the use of a heated bleach and salt bath to clear the leaves and stems. Both methods yield scaffolds with comparable mechanical properties and low cellular metabolic impact, thus allowing the user to select the protocol which better suits their intended application.


Asunto(s)
Hojas de la Planta/química , Plantas/química , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido
14.
J Electrocardiol ; 40(6 Suppl): S199-201, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17993323

RESUMEN

Heart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro. When delivered to the canine heart on an extracellular matrix patch to replace a full-thickness ventricular defect in vivo, they improve regional mechanical function. The delivered cells were also tracked, and some became myocytes with mature sarcomeres.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/patología , Infarto del Miocardio/cirugía , Animales , Perros , Proyectos Piloto , Resultado del Tratamiento
15.
Med Eng Phys ; 29(1): 154-62, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16531092

RESUMEN

Future treatment of heart disease may involve local perturbations of mechanical function, such as intramyocardial injections of angiogenic growth factors or progenitor cells. This necessitates an accurate measurement technique to determine regional heart function. We have previously developed a method to determine regional heart function using a phase correlation algorithm. However, in determining regional function over a single heartbeat it is necessary to sum displacements between many images. We have therefore incorporated a subpixel algorithm that models the result of phase correlation as a sinc function in order to increase the accuracy of our technique. This method, which we have named high density mapping (HDM), determines the subpixel displacement of 64 x 64 pixel regions from images of the heart. To determine the accuracy and precision of the technique, a high contrast image of a heart was digitally shifted 1, 2 or 3 pixels. The original and shifted images were then downsampled four times resulting in 0.25, 0.50 or 0.75 pixel shifts between the original and shifted images. The average accuracy of HDM in the digitally shifted images was 0.06 pixels, with a precision of 0.08 pixels. Effectiveness of HDM in characterization of deformation was also assessed in digitally stretched images. Error in quantification of strain was found to be less than 3.5% of the calculated strain. In an additional set of experiments, in which accuracy was determined using physical motion instead of digital shifting and downsampling, a speckle pattern was displaced by known distances using a micromanipulator, such that the displacement between the captured images was 0.5 pixels. These data demonstrated an accuracy of 0.09 pixels and a precision of 0.02 pixels. Finally, as HDM is used to determine the regional stroke work index (RSW) in beating hearts, the repeatability of using this method to compute RSW was assessed. RSW, the integral of intraventricular pressure with respect to unitless regional area, where end diastolic area was normalized to unity, was assessed in consecutive beats from four different hearts. The average standard deviation of RSW was 0.098 mmHg. Uncertainty analysis determined the maximum error of RSW to be +/-0.41 mmHg, approximately two-thirds of the measured biologic variability. These data demonstrate the ability of HDM to accurately and reproducibly measure displacement and regional function in the beating heart.


Asunto(s)
Corazón/anatomía & histología , Corazón/fisiología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Movimiento/fisiología , Fotograbar/métodos , Grabación en Video/métodos , Algoritmos , Animales , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Estadística como Asunto , Técnica de Sustracción
16.
Tissue Eng Part C Methods ; 23(8): 445-454, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28562232

RESUMEN

Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.


Asunto(s)
Calcio/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Óptica y Fotónica/métodos , Células Madre Pluripotentes/citología , Compuestos de Anilina/metabolismo , Fenómenos Biomecánicos/efectos de los fármacos , Fluorescencia , Humanos , Isoproterenol/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Factores de Tiempo , Xantenos/metabolismo
17.
ACS Biomater Sci Eng ; 3(7): 1394-1403, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33429697

RESUMEN

The ability to modulate the mechanical properties, and cell alignment within a cardiac patch without hindering cell functionality may have significant impact on developing therapies for treating myocardial infarctions. We developed fibrin-based composite layers comprising aligned microthreads distributed uniformly throughout a hydrogel. Increasing the microthread volume fraction (∼5%, 11% and 22%) significantly increased the moduli of the scaffolds (20.6 ± 8.1, 46.4 ± 23.0, and 97.5 ± 49.3 kPa, respectively), p < 0.05. Analyses of cell-mediated contractile strains and frequencies showed no significant differences among composite layers and fibrin hydrogel controls, suggesting that microthread-based composite layers exhibit similar active functional properties. Cell orientation in composite layers suggests an increase in nuclear alignment within 100 µm of fibrin microthreads and suggests that microthreads influence the alignment in adjacent areas. In this study, we developed composite layers with tunable, mechanical patch properties that improve cell alignment and support cell functionality.

18.
J Tissue Eng Regen Med ; 11(1): 220-230, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-24753390

RESUMEN

Current cardiac cell therapies cannot effectively target and retain cells in a specific area of the heart. Cell-seeded biological sutures were previously developed to overcome this limitation, demonstrating targeted delivery with > 60% cell retention. In this study, both cell-seeded and non-seeded fibrin-based biological sutures were implanted into normal functioning rat hearts to determine the effects on mechanical function and fibrotic response. Human mesenchymal stem cells (hMSCs) were used based on previous work and established cardioprotective effects. Non-seeded or hMSC-seeded sutures were implanted into healthy athymic rat hearts. Before cell seeding, hMSCs were passively loaded with quantum dot nanoparticles. One week after implantation, regional stroke work index and systolic area of contraction (SAC) were evaluated on the epicardial surface above the suture. Cell delivery and retention were confirmed by quantum dot tracking, and the fibrotic tissue area was evaluated. Non-seeded biological sutures decreased SAC near the suture from 0.20 ± 0.01 measured in sham hearts to 0.08 ± 0.02, whereas hMSC-seeded biological sutures dampened the decrease in SAC (0.15 ± 0.02). Non-seeded sutures also displayed a small amount of fibrosis around the sutures (1.0 ± 0.1 mm2 ). Sutures seeded with hMSCs displayed a significant reduction in fibrosis (0.5 ± 0.1 mm2 , p < 0.001), with quantum dot-labelled hMSCs found along the suture track. These results show that the addition of hMSCs attenuates the fibrotic response observed with non-seeded sutures, leading to improved regional mechanics of the implantation region. Copyright © 2014 John Wiley & Sons, Ltd.


Asunto(s)
Corazón/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Suturas , Animales , Diferenciación Celular , Supervivencia Celular , Trasplante de Células , Fibrina/farmacología , Fibrosis , Humanos , Masculino , Puntos Cuánticos , Ratas , Ratas Desnudas , Estrés Mecánico , Ingeniería de Tejidos , Andamios del Tejido
19.
Biomaterials ; 125: 13-22, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28222326

RESUMEN

Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass.


Asunto(s)
Perfusión/métodos , Hojas de la Planta/química , Haz Vascular de Plantas/química , Células Madre/citología , Células Madre/fisiología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Técnicas de Cultivo Celular por Lotes/instrumentación , Sistema Libre de Células/química , Células Cultivadas , Diseño de Equipo , Matriz Extracelular/química , Humanos , Petroselinum/química , Spinacia oleracea/química , Ingeniería de Tejidos/métodos
20.
Tissue Eng Part A ; 23(13-14): 696-707, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28323545

RESUMEN

Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be utilized for perfusion decellularization and, ultimately, anastomosis to the recipient vascular system after precellularization. The observed favorable immunological response and good tissue integration indicate the substantial regenerative potential of this platform.


Asunto(s)
Ensayo de Materiales , Piel , Colgajos Quirúrgicos , Andamios del Tejido/química , Animales , Ratas , Ratas Sprague-Dawley , Porcinos , Porcinos Enanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA