Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 54(8): 2192-2203, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37334709

RESUMEN

Currently most acute ischemic stroke patients presenting with a large vessel occlusion are treated with endovascular therapy (EVT), which results in high rates of successful recanalization. Despite this success, more than half of EVT-treated patients are significantly disabled 3 months later partly due to the occurrence of post-EVT intracerebral hemorrhage. Predicting post-EVT intracerebral hemorrhage is important for individualizing treatment strategies in clinical practice (eg, safe initiation of early antithrombotic therapies), as well as in selecting the optimal candidates for clinical trials that aim to reduce this deleterious outcome. Emerging data suggest that brain and vascular imaging biomarkers may be particularly relevant since they provide insights into the ongoing acute stroke pathophysiology. In this review/perspective, we summarize the accumulating literature on the role of cerebrovascular imaging biomarkers in predicting post-EVT-associated intracerebral hemorrhage. We focus on imaging acquired before EVT, during the EVT procedure, and in the early post-EVT time frames when new therapeutic therapies could be tested. Accounting for the complex pathophysiology of post-EVT-associated intracerebral hemorrhage, this review may provide some guidance for future prospective observational or therapeutic studies.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/terapia , Accidente Cerebrovascular Isquémico/etiología , Resultado del Tratamiento , Accidente Cerebrovascular/terapia , Hemorragia Cerebral/etiología , Trombectomía/métodos , Procedimientos Endovasculares/métodos , Encéfalo , Neuroimagen , Estudios Observacionales como Asunto
2.
Ann Surg ; 277(3): e503-e512, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129529

RESUMEN

OBJECTIVE: The longitudinal assessment of physical function with high temporal resolution at a scalable and objective level in patients recovering from surgery is highly desirable to understand the biological and clinical factors that drive the clinical outcome. However, physical recovery from surgery itself remains poorly defined and the utility of wearable technologies to study recovery after surgery has not been established. BACKGROUND: Prolonged postoperative recovery is often associated with long-lasting impairment of physical, mental, and social functions. Although phenotypical and clinical patient characteristics account for some variation of individual recovery trajectories, biological differences likely play a major role. Specifically, patient-specific immune states have been linked to prolonged physical impairment after surgery. However, current methods of quantifying physical recovery lack patient specificity and objectivity. METHODS: Here, a combined high-fidelity accelerometry and state-of-the-art deep immune profiling approach was studied in patients undergoing major joint replacement surgery. The aim was to determine whether objective physical parameters derived from accelerometry data can accurately track patient-specific physical recovery profiles (suggestive of a 'clock of postoperative recovery'), compare the performance of derived parameters with benchmark metrics including step count, and link individual recovery profiles with patients' preoperative immune state. RESULTS: The results of our models indicate that patient-specific temporal patterns of physical function can be derived with a precision superior to benchmark metrics. Notably, 6 distinct domains of physical function and sleep are identified to represent the objective temporal patterns: ''activity capacity'' and ''moderate and overall activity (declined immediately after surgery); ''sleep disruption and sedentary activity (increased after surgery); ''overall sleep'', ''sleep onset'', and ''light activity'' (no clear changes were observed after surgery). These patterns can be linked to individual patients preopera-tive immune state using cross-validated canonical-correlation analysis. Importantly, the pSTAT3 signal activity in monocytic myeloid-derived suppressor cells predicted a slower recovery. CONCLUSIONS: Accelerometry-based recovery trajectories are scalable and objective outcomes to study patient-specific factors that drive physical recovery.


Asunto(s)
Benchmarking , Ejercicio Físico , Humanos , Monocitos , Examen Físico , Periodo Posoperatorio
3.
Cytometry A ; 103(5): 392-404, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36507780

RESUMEN

Technologies for single-cell profiling of the immune system have enabled researchers to extract rich interconnected networks of cellular abundance, phenotypical and functional cellular parameters. These studies can power machine learning approaches to understand the role of the immune system in various diseases. However, the performance of these approaches and the generalizability of the findings have been hindered by limited cohort sizes in translational studies, partially due to logistical demands and costs associated with longitudinal data collection in sufficiently large patient cohorts. An evolving challenge is the requirement for ever-increasing cohort sizes as the dimensionality of datasets grows. We propose a deep learning model derived from a novel pipeline of optimal temporal cell matching and overcomplete autoencoders that uses data from a small subset of patients to learn to forecast an entire patient's immune response in a high dimensional space from one timepoint to another. In our analysis of 1.08 million cells from patients pre- and post-surgical intervention, we demonstrate that the generated patient-specific data are qualitatively and quantitatively similar to real patient data by demonstrating fidelity, diversity, and usefulness.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Humanos , Proteómica
4.
Am J Perinatol ; 40(1): 74-88, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015838

RESUMEN

OBJECTIVES: The aim of the study was to: (1) Identify (early in pregnancy) psychosocial and stress-related factors that predict risk of spontaneous preterm birth (PTB, gestational age <37 weeks); (2) Investigate whether "protective" factors (e.g., happiness/social support) decrease risk; (3) Use the Dhabhar Quick-Assessment Questionnaire for Stress and Psychosocial Factors (DQAQ-SPF) to rapidly quantify harmful or protective factors that predict increased or decreased risk respectively, of PTB. STUDY DESIGN: This is a prospective cohort study. Relative risk (RR) analyses investigated association between individual factors and PTB. Machine learning-based interdependency analysis (IDPA) identified factor clusters, strength, and direction of association with PTB. A nonlinear model based on support vector machines was built for predicting PTB and identifying factors that most strongly predicted PTB. RESULTS: Higher levels of deleterious factors were associated with increased RR for PTB: General anxiety (RR = 8.9; 95% confidence interval [CI] = 2.0,39.6), pain (RR = 5.7; CI = 1.7,17.0); tiredness/fatigue (RR = 3.7; CI = 1.09,13.5); perceived risk of birth complications (RR = 4; CI = 1.6,10.01); self-rated health current (RR = 2.6; CI = 1.0,6.7) and previous 3 years (RR = 2.9; CI = 1.1,7.7); and divorce (RR = 2.9; CI = 1.1,7.8). Lower levels of protective factors were also associated with increased RR for PTB: low happiness (RR = 9.1; CI = 1.25,71.5); low support from parents/siblings (RR = 3.5; CI = 0.9,12.9), and father-of-baby (RR = 3; CI = 1.1,9.9). These factors were also components of the clusters identified by the IDPA: perceived risk of birth complications (p < 0.05 after FDR correction), and general anxiety, happiness, tiredness/fatigue, self-rated health, social support, pain, and sleep (p < 0.05 without FDR correction). Supervised analysis of all factors, subject to cross-validation, produced a model highly predictive of PTB (AUROC or area under the receiver operating characteristic = 0.73). Model reduction through forward selection revealed that even a small set of factors (including those identified by RR and IDPA) predicted PTB. CONCLUSION: These findings represent an important step toward identifying key factors, which can be assessed rapidly before/after conception, to predict risk of PTB, and perhaps other adverse pregnancy outcomes. Quantifying these factors, before, or early in pregnancy, could identify women at risk of delivering preterm, pinpoint mechanisms/targets for intervention, and facilitate the development of interventions to prevent PTB. KEY POINTS: · Newly designed questionnaire used for rapid quantification of stress and psychosocial factors early during pregnancy.. · Deleterious factors predict increased preterm birth (PTB) risk.. · Protective factors predict decreased PTB risk..


Asunto(s)
Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Lactante , Nacimiento Prematuro/prevención & control , Estudios Prospectivos , Resultado del Embarazo , Edad Gestacional , Dolor , Factores de Riesgo
5.
Ann Surg ; 275(3): 582-590, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954754

RESUMEN

OBJECTIVE: The aim of this study was to determine whether single-cell and plasma proteomic elements of the host's immune response to surgery accurately identify patients who develop a surgical site complication (SSC) after major abdominal surgery. SUMMARY BACKGROUND DATA: SSCs may occur in up to 25% of patients undergoing bowel resection, resulting in significant morbidity and economic burden. However, the accurate prediction of SSCs remains clinically challenging. Leveraging high-content proteomic technologies to comprehensively profile patients' immune response to surgery is a promising approach to identify predictive biological factors of SSCs. METHODS: Forty-one patients undergoing non-cancer bowel resection were prospectively enrolled. Blood samples collected before surgery and on postoperative day one (POD1) were analyzed using a combination of single-cell mass cytometry and plasma proteomics. The primary outcome was the occurrence of an SSC, including surgical site infection, anastomotic leak, or wound dehiscence within 30 days of surgery. RESULTS: A multiomic model integrating the single-cell and plasma proteomic data collected on POD1 accurately differentiated patients with (n = 11) and without (n = 30) an SSC [area under the curve (AUC) = 0.86]. Model features included coregulated proinflammatory (eg, IL-6- and MyD88- signaling responses in myeloid cells) and immunosuppressive (eg, JAK/STAT signaling responses in M-MDSCs and Tregs) events preceding an SSC. Importantly, analysis of the immunological data obtained before surgery also yielded a model accurately predicting SSCs (AUC = 0.82). CONCLUSIONS: The multiomic analysis of patients' immune response after surgery and immune state before surgery revealed systemic immune signatures preceding the development of SSCs. Our results suggest that integrating immunological data in perioperative risk assessment paradigms is a plausible strategy to guide individualized clinical care.


Asunto(s)
Fuga Anastomótica/epidemiología , Proteínas Sanguíneas/análisis , Proteínas en la Dieta/sangre , Dehiscencia de la Herida Operatoria/epidemiología , Infección de la Herida Quirúrgica/epidemiología , Adulto , Estudios de Cohortes , Procedimientos Quirúrgicos del Sistema Digestivo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Pronóstico , Estudios Prospectivos , Proteoma , Análisis de la Célula Individual
6.
J Surg Res ; 273: 226-232, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101683

RESUMEN

INTRODUCTION: Preoperative optimization programs have demonstrated positive effects on perioperative physical function and surgical outcomes. In nonsurgical populations, physical activity and healthy diet may reduce pain and pain medication requirement, but this has not been studied in surgical patients. Our aim was to determine whether a preoperative diet and exercise intervention affects postoperative pain and pain medication use. METHODS: Patients undergoing abdominal colorectal surgery were invited to participate in a web-based patient engagement program. Those enrolling in the first and third time periods received information on the standard perioperative pathway (enhanced recovery after surgery [ERAS]). Those enrolling in the second time period also received reminders on nutrition and exercise (PREHAB + ERAS). The primary outcome was postoperative inpatient opioid use. The secondary outcomes were inpatient postoperative pain scores and nonopioid pain medication use. RESULTS: The ERAS and PREHAB + ERAS groups were similar in demographic and operative characteristics. Subgroup analysis of patients who activated their accounts demonstrated that the two groups had similar average maximum daily pain scores, but the PREHAB + ERAS group (n = 158) used 15.9 fewer oral morphine equivalents per postoperative inpatient day than the ERAS group (n = 92), representing a 30% decrease (53 mg versus 37.1 mg, P = 0.04). The two groups used comparable amounts of acetaminophen, gabapentin, and ketorolac. Generalized linear models demonstrated that PREHAB + ERAS, minimally invasive surgery, and older age were associated with lower inpatient opioid use. CONCLUSIONS: Access to a web-based preoperative diet and exercise program may reduce inpatient opioid use after major elective colorectal surgery. Further studies are necessary to determine whether the degree of adherence to nutrition and physical activity recommendations has a dose-dependent effect on opioid use.


Asunto(s)
Cirugía Colorrectal , Trastornos Relacionados con Opioides , Analgésicos Opioides/uso terapéutico , Estudios de Cohortes , Cirugía Colorrectal/efectos adversos , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología , Dolor Postoperatorio/prevención & control , Ejercicio Preoperatorio , Estudios Retrospectivos
7.
Am J Perinatol ; 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35292943

RESUMEN

Understanding the role of stress in pregnancy and its consequences is important, particularly given documented associations between maternal stress and preterm birth and other pathological outcomes. Physical and psychological stressors can elicit the same biological responses, known as biological strain. Chronic stressors, like poverty and racism (race-based discriminatory treatment), may create a legacy or trajectory of biological strain that no amount of coping can relieve in the absence of larger-scale socio-behavioral or societal changes. An integrative approach that takes into consideration simultaneously social and biological determinants of stress may provide the best insights into the risk of preterm birth. The most successful computational approaches and the most predictive machine-learning models are likely to be those that combine information about the stressors and the biological strain (for example, as measured by different omics) experienced during pregnancy.

8.
Ann Surg ; 273(2): 289-298, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188202

RESUMEN

OBJECTIVES: To identify perioperative practice patterns that predictably impact postoperative pain. BACKGROUND: Despite significant advances in perioperative medicine, a significant portion of patients still experience severe pain after major surgery. Postoperative pain is associated with serious adverse outcomes that are costly to patients and society. METHODS: The presented analysis took advantage of a unique observational data set providing unprecedented detailed pharmacological information. The data were collected by PAIN OUT, a multinational registry project established by the European Commission to improve postoperative pain outcomes. A multivariate approach was used to derive and validate a model predictive of pain on postoperative day 1 (POD1) in 1008 patients undergoing back surgery. RESULTS: The predictive and validated model was highly significant (P = 8.9E-15) and identified modifiable practice patterns. Importantly, the number of nonopioid analgesic drug classes administered during surgery predicted decreased pain on POD1. At least 2 different nonopioid analgesic drug classes (cyclooxygenase inhibitors, acetaminophen, nefopam, or metamizol) were required to provide meaningful pain relief (>30%). However, only a quarter of patients received at least 2 nonanalgesic drug classes during surgery. In addition, the use of very short-acting opioids predicted increased pain on POD1, suggesting room for improvement in the perioperative management of these patients. Although the model was highly significant, it only accounted for a relatively small fraction of the observed variance. CONCLUSION: The presented analysis offers detailed insight into current practice patterns and reveals modifications that can be implemented in today's clinical practice. Our results also suggest that parameters other than those currently studied are relevant for postoperative pain including biological and psychological variables.


Asunto(s)
Dolor Agudo/epidemiología , Procedimientos Ortopédicos/efectos adversos , Dolor Postoperatorio/epidemiología , Pautas de la Práctica en Medicina/estadística & datos numéricos , Columna Vertebral/cirugía , Dolor Agudo/diagnóstico , Dolor Agudo/tratamiento farmacológico , Anciano , Analgésicos/uso terapéutico , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Procedimientos Ortopédicos/estadística & datos numéricos , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/tratamiento farmacológico , Valor Predictivo de las Pruebas , Factores de Riesgo
9.
Curr Opin Crit Care ; 27(6): 717-725, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545029

RESUMEN

PURPOSE OF REVIEW: Postoperative complications including infections, cognitive impairment, and protracted recovery occur in one-third of the 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on our healthcare system. However, the accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain as major clinical challenges. RECENT FINDINGS: Although multifactorial in origin, the dysregulation of immunological mechanisms that occur in response to surgical trauma is a key determinant of postoperative complications. Prior research, primarily focusing on inflammatory plasma markers, has provided important clues regarding their pathogenesis. However, the recent advent of high-content, single-cell transcriptomic, and proteomic technologies has considerably improved our ability to characterize the immune response to surgery, thereby providing new means to understand the immunological basis of postoperative complications and to identify prognostic biological signatures. SUMMARY: The comprehensive and single-cell characterization of the human immune response to surgery has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers, ultimately providing patients and surgeons with actionable information to improve surgical outcomes. Although recent studies have generated a wealth of knowledge, laying the foundation for a single-cell atlas of the human immune response to surgery, larger-scale multiomic studies are required to derive robust, scalable, and sufficiently powerful models to accurately predict the risk of postoperative complications in individual patients.


Asunto(s)
Complicaciones Posoperatorias , Proteómica , Biomarcadores , Humanos , Inmunidad , Pronóstico
10.
Bioinformatics ; 35(1): 95-103, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561547

RESUMEN

Motivation: Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results: We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation: Datasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metaboloma , Microbiota , Embarazo , Proteoma , Transcriptoma , Biología Computacional , Femenino , Humanos
11.
Cytometry A ; 97(3): 268-278, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31633883

RESUMEN

High-dimensional flow cytometry has matured to a level that enables deep phenotyping of cellular systems at a clinical scale. The resulting high-content data sets allow characterizing the human immune system at unprecedented single cell resolution. However, the results are highly dependent on sample preparation and measurements might drift over time. While various controls exist for assessment and improvement of data quality in a single sample, the challenges of cross-sample normalization attempts have been limited to aligning marker distributions across subjects. These approaches, inspired by bulk genomics and proteomics assays, ignore the single-cell nature of the data and risk the removal of biologically relevant signals. This work proposes CytoNorm, a normalization algorithm to ensure internal consistency between clinical samples based on shared controls across various study batches. Data from the shared controls is used to learn the appropriate transformations for each batch (e.g., each analysis day). Importantly, some sources of technical variation are strongly influenced by the amount of protein expressed on specific cell types, requiring several population-specific transformations to normalize cells from a heterogeneous sample. To address this, our approach first identifies the overall cellular distribution using a clustering step, and calculates subset-specific transformations on the control samples by computing their quantile distributions and aligning them with splines. These transformations are then applied to all other clinical samples in the batch to remove the batch-specific variations. We evaluated the algorithm on a customized data set with two shared controls across batches. One control sample was used for calculation of the normalization transformations and the second control was used as a blinded test set and evaluated with Earth Mover's distance. Additional results are provided using two real-world clinical data sets. Overall, our method compared favorably to standard normalization procedures. The algorithm is implemented in the R package "CytoNorm" and available via the following link: www.github.com/saeyslab/CytoNorm © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Algoritmos , Genómica , Análisis por Conglomerados , Citometría de Flujo , Humanos , Proteómica
12.
Brain ; 142(4): 978-991, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860258

RESUMEN

Stroke is a leading cause of cognitive impairment and dementia, but the mechanisms that underlie post-stroke cognitive decline are not well understood. Stroke produces profound local and systemic immune responses that engage all major innate and adaptive immune compartments. However, whether the systemic immune response to stroke contributes to long-term disability remains ill-defined. We used a single-cell mass cytometry approach to comprehensively and functionally characterize the systemic immune response to stroke in longitudinal blood samples from 24 patients over the course of 1 year and correlated the immune response with changes in cognitive functioning between 90 and 365 days post-stroke. Using elastic net regularized regression modelling, we identified key elements of a robust and prolonged systemic immune response to ischaemic stroke that occurs in three phases: an acute phase (Day 2) characterized by increased signal transducer and activator of transcription 3 (STAT3) signalling responses in innate immune cell types, an intermediate phase (Day 5) characterized by increased cAMP response element-binding protein (CREB) signalling responses in adaptive immune cell types, and a late phase (Day 90) by persistent elevation of neutrophils, and immunoglobulin M+ (IgM+) B cells. By Day 365 there was no detectable difference between these samples and those from an age- and gender-matched patient cohort without stroke. When regressed against the change in the Montreal Cognitive Assessment scores between Days 90 and 365 after stroke, the acute inflammatory phase Elastic Net model correlated with post-stroke cognitive trajectories (r = -0.692, Bonferroni-corrected P = 0.039). The results demonstrate the utility of a deep immune profiling approach with mass cytometry for the identification of clinically relevant immune correlates of long-term cognitive trajectories.


Asunto(s)
Cognición/fisiología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/fisiopatología , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/complicaciones , Proteína de Unión a CREB/metabolismo , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/inmunología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/inmunología , Estudios de Cohortes , Femenino , Humanos , Inmunoglobulina M , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neutrófilos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Accidente Cerebrovascular/complicaciones , Sobrevivientes
13.
Bioinformatics ; 34(23): 4131-4133, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850785

RESUMEN

Motivation: High-parameter single-cell technologies can reveal novel cell populations of interest, but studying or validating these populations using lower-parameter methods remains challenging. Results: Here, we present GateFinder, an algorithm that enriches high-dimensional cell types with simple, stepwise polygon gates requiring only two markers at a time. A series of case studies of complex cell types illustrates how simplified enrichment strategies can enable more efficient assays, reveal novel biomarkers and clarify underlying biology. Availability and implementation: The GateFinder algorithm is implemented as a free and open-source package for BioConductor: https://nalab.stanford.edu/gatefinder. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Biomarcadores/análisis , Citometría de Flujo , Programas Informáticos
14.
Cytometry A ; 95(4): 431-441, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30887636

RESUMEN

On May 2017, the World Health Organization (WHO) recognized sepsis as a global health priority by adopting a resolution to improve the prevention, diagnosis, and management of this deadly disease. While it has long been known that sepsis deeply perturbs immune homeostasis by inducing a tremendous systemic inflammatory response, pivotal observations based on clinical flow cytometry indicate that sepsis indeed initiates a more complex immune response that varies over time, with the concomitant occurrence of both pro- and anti-inflammatory mechanisms. As a resultant, some septic patients enter a stage of protracted immunosuppression. This paved the way for immunostimulation approaches in sepsis. Clinical flow cytometry permitted this evolution by drawing a new picture of pathophysiology and reshaping immune trajectories in patients. Additional information from cytometry by time of flight mass cytometry and other high-dimensional flow cytometry platform should rapidly enrich our understanding of this complex disease. This review reports on landmarks of clinical flow cytometry in sepsis and how this single-cell analysis technique permitted to breach the wall of decades of unfruitful anti-inflammatory-based clinical trials in sepsis. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/métodos , Citometría de Flujo/tendencias , Sepsis/inmunología , Sepsis/patología , Animales , Humanos , Tolerancia Inmunológica/inmunología , Activación de Linfocitos/fisiología , Análisis de la Célula Individual/métodos
15.
J Immunol ; 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794234

RESUMEN

Application of high-content immune profiling technologies has enormous potential to advance medicine. Whether these technologies reveal pertinent biology when implemented in interventional clinical trials is an important question. The beneficial effects of preoperative arginine-enriched dietary supplements (AES) are highly context specific, as they reduce infection rates in elective surgery, but possibly increase morbidity in critically ill patients. This study combined single-cell mass cytometry with the multiplex analysis of relevant plasma cytokines to comprehensively profile the immune-modifying effects of this much-debated intervention in patients undergoing surgery. An elastic net algorithm applied to the high-dimensional mass cytometry dataset identified a cross-validated model consisting of 20 interrelated immune features that separated patients assigned to AES from controls. The model revealed wide-ranging effects of AES on innate and adaptive immune compartments. Notably, AES increased STAT1 and STAT3 signaling responses in lymphoid cell subsets after surgery, consistent with enhanced adaptive mechanisms that may protect against postsurgical infection. Unexpectedly, AES also increased ERK and P38 MAPK signaling responses in monocytic myeloid-derived suppressor cells, which was paired with their pronounced expansion. These results provide novel mechanistic arguments as to why AES may exert context-specific beneficial or adverse effects in patients with critical illness. This study lays out an analytical framework to distill high-dimensional datasets gathered in an interventional clinical trial into a fairly simple model that converges with known biology and provides insight into novel and clinically relevant cellular mechanisms.

16.
J Immunol ; 198(6): 2479-2488, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28179497

RESUMEN

Despite clear differences in immune system responses and in the prevalence of autoimmune diseases between males and females, there is little understanding of the processes involved. In this study, we identified a gene signature of immature-like neutrophils, characterized by the overexpression of genes encoding for several granule-containing proteins, which was found at higher levels (up to 3-fold) in young (20-30 y old) but not older (60 to >89 y old) males compared with females. Functional and phenotypic characterization of peripheral blood neutrophils revealed more mature and responsive neutrophils in young females, which also exhibited an elevated capacity in neutrophil extracellular trap formation at baseline and upon microbial or sterile autoimmune stimuli. The expression levels of the immature-like neutrophil signature increased linearly with pregnancy, an immune state of increased susceptibility to certain infections. Using mass cytometry, we also find increased frequencies of immature forms of neutrophils in the blood of women during late pregnancy. Thus, our findings show novel sex differences in innate immunity and identify a common neutrophil signature in males and in pregnant women.


Asunto(s)
Factores de Edad , Células Sanguíneas/fisiología , Células Precursoras de Granulocitos/fisiología , Neutrófilos/fisiología , Sexo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Embarazo , Transcriptoma , Adulto Joven
17.
Am J Obstet Gynecol ; 218(3): 347.e1-347.e14, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29277631

RESUMEN

BACKGROUND: Early detection of maladaptive processes underlying pregnancy-related pathologies is desirable because it will enable targeted interventions ahead of clinical manifestations. The quantitative analysis of plasma proteins features prominently among molecular approaches used to detect deviations from normal pregnancy. However, derivation of proteomic signatures sufficiently predictive of pregnancy-related outcomes has been challenging. An important obstacle hindering such efforts were limitations in assay technology, which prevented the broad examination of the plasma proteome. OBJECTIVE: The recent availability of a highly multiplexed platform affording the simultaneous measurement of 1310 plasma proteins opens the door for a more explorative approach. The major aim of this study was to examine whether analysis of plasma collected during gestation of term pregnancy would allow identifying a set of proteins that tightly track gestational age. Establishing precisely timed plasma proteomic changes during term pregnancy is a critical step in identifying deviations from regular patterns caused by fetal and maternal maladaptations. A second aim was to gain insight into functional attributes of identified proteins and link such attributes to relevant immunological changes. STUDY DESIGN: Pregnant women participated in this longitudinal study. In 2 subsequent sets of 21 (training cohort) and 10 (validation cohort) women, specific blood specimens were collected during the first (7-14 weeks), second (15-20 weeks), and third (24-32 weeks) trimesters and 6 weeks postpartum for analysis with a highly multiplexed aptamer-based platform. An elastic net algorithm was applied to infer a proteomic model predicting gestational age. A bootstrapping procedure and piecewise regression analysis was used to extract the minimum number of proteins required for predicting gestational age without compromising predictive power. Gene ontology analysis was applied to infer enrichment of molecular functions among proteins included in the proteomic model. Changes in abundance of proteins with such functions were linked to immune features predictive of gestational age at the time of sampling in pregnancies delivering at term. RESULTS: An independently validated model consisting of 74 proteins strongly predicted gestational age (P = 3.8 × 10-14, R = 0.97). The model could be reduced to 8 proteins without losing its predictive power (P = 1.7 × 10-3, R = 0.91). The 3 top ranked proteins were glypican 3, chorionic somatomammotropin hormone, and granulins. Proteins activating the Janus kinase and signal transducer and activator of transcription pathway were enriched in the proteomic model, chorionic somatomammotropin hormone being the top-ranked protein. Abundance of chorionic somatomammotropin hormone strongly correlated with signal transducer and activator of transcription-5 signaling activity in CD4 T cells, the endogenous cell-signaling event most predictive of gestational age. CONCLUSION: Results indicate that precisely timed changes in the plasma proteome during term pregnancy mirror a proteomic clock. Importantly, the combined use of several plasma proteins was required for accurate prediction. The exciting promise of such a clock is that deviations from its regular chronological profile may assist in the early diagnoses of pregnancy-related pathologies, and point to underlying pathophysiology. Functional analysis of the proteomic model generated the novel hypothesis that chrionic somatomammotropin hormone may critically regulate T-cell function during pregnancy.


Asunto(s)
Edad Gestacional , Periodo Posparto/sangre , Trimestres del Embarazo/sangre , Embarazo/sangre , Proteoma/metabolismo , Adulto , Algoritmos , Biomarcadores/sangre , Linfocitos T CD4-Positivos/metabolismo , Femenino , Ontología de Genes , Glipicanos/sangre , Granulinas/sangre , Humanos , Quinasas Janus/sangre , Modelos Teóricos , Lactógeno Placentario/sangre , Valor Predictivo de las Pruebas , Factores de Transcripción STAT/sangre , Factor de Transcripción STAT5/sangre , Transducción de Señal
18.
J Immunol ; 197(11): 4482-4492, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27793998

RESUMEN

Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus is critical for the maintenance of pregnancy and the delivery of an immunocompetent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyperresponsiveness of CD4+ and CD8+ T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation in fetal Tbet+CD4+ T cells, CD8+ T cells, B cells, and CD56loCD16+ NK cells and decreased ERK1/2, MAPK-activated protein kinase 2, and STAT1 phosphorylation in fetal intermediate and nonclassical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Innata/fisiología , Células Asesinas Naturales/inmunología , Placenta/inmunología , Embarazo/inmunología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Femenino , Humanos , Proteínas Gestacionales/inmunología , Factor de Transcripción STAT1/inmunología
20.
Genes Dev ; 24(8): 799-813, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20395366

RESUMEN

Neuronal polarity is essential for normal brain development and function. However, cell-intrinsic mechanisms that govern the establishment of neuronal polarity remain to be identified. Here, we report that knockdown of endogenous FOXO proteins in hippocampal and cerebellar granule neurons, including in the rat cerebellar cortex in vivo, reveals a requirement for the FOXO transcription factors in the establishment of neuronal polarity. The FOXO transcription factors, including the brain-enriched protein FOXO6, play a critical role in axo-dendritic polarization of undifferentiated neurites, and hence in a switch from unpolarized to polarized neuronal morphology. We also identify the gene encoding the protein kinase Pak1, which acts locally in neuronal processes to induce polarity, as a critical direct target gene of the FOXO transcription factors. Knockdown of endogenous Pak1 phenocopies the effect of FOXO knockdown on neuronal polarity. Importantly, exogenous expression of Pak1 in the background of FOXO knockdown in both primary neurons and postnatal rat pups in vivo restores the polarized morphology of neurons. These findings define the FOXO proteins and Pak1 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal polarity, thus identifying a novel function for the FOXO transcription factors in a unique aspect of neural development.


Asunto(s)
Polaridad Celular/fisiología , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/fisiología , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Animales , Polaridad Celular/genética , Células Cultivadas , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Hipocampo/fisiología , Neuronas/metabolismo , Interferencia de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA