Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(3): 560-563, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38407162

RESUMEN

Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.


Asunto(s)
Evolución Biológica , Mycobacterium , Filogenia , Mycobacterium/genética , Programas Informáticos , África Central/epidemiología
2.
Eur Respir J ; 57(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32943401

RESUMEN

Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum.With MTBC DNA tests, the limit of detection was 100-1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3-12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canettii" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
3.
Emerg Infect Dis ; 25(3): 564-568, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30789124

RESUMEN

In a 12-month nationwide study on the prevalence of drug-resistant tuberculosis (TB) in Lebanon, we identified 3 multidrug-resistant cases and 3 extensively drug-resistant TB cases in refugees, migrants, and 1 Lebanon resident. Enhanced diagnostics, particularly in major destinations for refugees, asylum seekers, and migrant workers, can inform treatment decisions and may help prevent the spread of drug-resistant TB.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Adulto , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Femenino , Genes Bacterianos , Genotipo , Historia del Siglo XXI , Humanos , Líbano/epidemiología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Repeticiones de Minisatélite , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/historia , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto Joven
4.
J Clin Microbiol ; 57(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31413081

RESUMEN

Rifampin heteroresistance-where rifampin-resistant and -susceptible tuberculosis (TB) bacilli coexist-may result in failed standard TB treatment and potential spread of rifampin-resistant strains. The detection of rifampin heteroresistance in routine rapid diagnostic tests (RDTs) allows for patients to receive prompt and effective multidrug-resistant-TB treatment and may improve rifampin-resistant TB control. The limit of detection (LOD) of rifampin heteroresistance for phenotypic drug susceptibility testing by the proportion method is 1% and, yet, is insufficiently documented for RDTs. We, therefore, aimed to determine, for the four RDTs (XpertMTB/RIF, XpertMTB/RIF Ultra, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII), the LOD per probe and mutation, validated by CFU counting and targeted deep sequencing (Deeplex-MycTB). We selected one rifampin-susceptible and four rifampin-resistant strains, with mutations D435V, H445D, H445Y, and S450L, respectively, mixed them in various proportions in triplicate, tested them with each RDT, and determined the LODs per mutation type. Deeplex-MycTB revealed concordant proportions of the minority resistant variants in the mixtures. The Deeplex-MycTB-validated LODs ranged from 20% to 80% for XpertMTB/RIF, 20% to 70% for Xpert Ultra, 5% to 10% for GenoTypeMTBDRplusv2.0, and 1% to 10% for GenoscholarNTM+MDRTBII for the different mutations. Deeplex-MycTB, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII provide explicit information on rifampin heteroresistance for the most frequently detected mutations. Classic Xpert and Ultra report rifampin heteroresistance as rifampin resistance, while Ultra may denote rifampin heteroresistance through "mixed patterns" of wild-type and mutant melt probe, melt peak temperatures. Overall, our findings inform end users that the threshold for reporting resistance in the case of rifampin heteroresistance is the highest for Classic Xpert and Ultra to resolve phenotypic and genotypic discordant rifampin-resistant TB results.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Técnicas de Diagnóstico Molecular/normas , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Proteínas Bacterianas/genética , Genotipo , Humanos , Límite de Detección , Pruebas de Sensibilidad Microbiana , Técnicas de Diagnóstico Molecular/métodos , Mutación , Mycobacterium tuberculosis/genética , Juego de Reactivos para Diagnóstico/normas , Sensibilidad y Especificidad , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
6.
Nat Commun ; 14(1): 7519, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980337

RESUMEN

The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Filogenia , Etiopía , Tuberculosis/microbiología , África Oriental
7.
iScience ; 26(4): 106411, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37091238

RESUMEN

Tuberculosis (TB) is the historical leading cause of death by a single infectious agent. The European Regimen Accelerator for Tuberculosis (ERA4TB) is a public-private partnership of 30+ institutions with the objective to progress new anti-TB regimens into the clinic. Thus, robust and replicable results across independent laboratories are essential for reliable interpretation of treatment efficacy. A standardization workgroup unified in vitro protocols and data reporting templates. Time-kill assays provide essential input data for pharmacometric model-informed translation of single agents and regimens activity from in vitro to in vivo and the clinic. Five conditions were assessed by time-kill assays in six independent laboratories using four bacterial plating methods. Baseline bacterial burden varied between laboratories but variability was limited in net drug effect, confirming 2.5 µL equally robust as 100 µL plating. This exercise establishes the foundations of collaborative data generation, reporting, and integration within the overarching Antimicrobial Resistance Accelerator program.

8.
EBioMedicine ; 93: 104649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37327675

RESUMEN

BACKGROUND: Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS: The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS: The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION: Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING: EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.


Asunto(s)
Lepra , Mycobacterium tuberculosis , Humanos , Mycobacterium leprae/genética , Pruebas de Sensibilidad Microbiana , Genotipo , Farmacorresistencia Bacteriana/genética , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Lepra/epidemiología , Dapsona , Biopsia , Resistencia a Múltiples Medicamentos
9.
J Virol ; 85(14): 7449-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21561912

RESUMEN

Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7ß, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies.


Asunto(s)
Arterivirus/genética , Proteínas no Estructurales Virales/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
10.
Nat Commun ; 13(1): 5105, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042200

RESUMEN

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Teorema de Bayes , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA