Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39419027

RESUMEN

Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/ß-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.

2.
Eur J Neurol ; 30(10): 3400-3403, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37433570

RESUMEN

BACKGROUND AND PURPOSE: Defects in the mitochondrial respiratory chain (MRC) can lead to combined MRC dysfunctions (COXPDs) with heterogenous genotypes and clinical features. We report a patient carrying heterozygous variants in the TUFM gene who presented with clinical features compatible with COXPD4 and radiological findings mimicking multiple sclerosis (MS). METHODS: A 37-year-old French Canadian woman was investigated for recent onset of gait and balance problems. Her previous medical history included recurrent episodes of hyperventilation associated with lactic acidosis during infections, asymptomatic Wolff-Parkinson-White syndrome, and nonprogressive sensorineural deafness. RESULTS: Neurological examinations revealed fine bilateral nystagmus, facial weakness, hypertonia, hyperreflexia, dysdiadochokinesia, dysmetria, and ataxic gait. Brain magnetic resonance imaging (MRI) showed multifocal white matter abnormalities in cerebral white matter as well as cerebellar hemispheres, brainstem, and middle cerebellar peduncles, some of which mimicked MS. Analysis of native-state oxidative phosphorylation showed a combined decrease in CI/CII, CIV/CII, and CVI/CII. Exome sequencing detected two heterozygous TUFM gene variants. Little clinical progression was noted over a 5-year follow-up. Brain MRI remained unchanged. CONCLUSIONS: Our report broadens the phenotypic and radiological spectrum of TUFM-related disorders by adding milder, later onset forms to the previously known early onset, severe presentations. The presence of multifocal white matter abnormalities can be misinterpreted as due to acquired demyelinating diseases, and thus TUFM-related disorders should be added to the list of mitochondrial MS mimickers.


Asunto(s)
Ataxia Cerebelosa , Esclerosis Múltiple , Sustancia Blanca , Femenino , Humanos , Adulto , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Canadá , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Tronco Encefálico , Imagen por Resonancia Magnética
3.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34907471

RESUMEN

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Mutación , Trastornos del Neurodesarrollo/genética , Adolescente , Empalme Alternativo/genética , Sustitución de Aminoácidos , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Cromosomas Humanos X/genética , Codón sin Sentido , Enfermedades en Gemelos/diagnóstico por imagen , Enfermedades en Gemelos/genética , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Variación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Mutación Missense , Trastornos del Neurodesarrollo/diagnóstico por imagen , Fenotipo , RNA-Seq , Gemelos Monocigóticos , Adulto Joven
4.
Haemophilia ; 26(6): 1056-1063, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33094873

RESUMEN

BACKGROUND: The causative variant remains unidentified in 2%-5% of haemophilia A (HA) patients despite an exhaustive sequencing of the full F8 coding sequence, splice consensus sequences, 5'/3' untranslated regions and copy number variant (CNV) analysis. Next-generation sequencing (NGS) has provided significant improvements for a complete F8 analysis. AIM: The aim of this study was to identify and characterize pathogenic non-coding variants in F8 of 15 French and Canadian HA patients genetically unresolved, through the use of NGS, mRNA sequencing and functional confirmation of aberrant splicing. METHODS: We sequenced the entire F8 gene using an NGS capture method. We analysed F8 mRNA in order to detect aberrant transcripts. The pathogenic effect of candidate intronic variants was further confirmed using a minigene assay. RESULTS: After bioinformatic analysis, 11 deep intronic variants were identified in 13 patients (8 new variants and 3 previously reported). Three variants were confirmed to be likely pathogenic with the presence of an aberrant transcript during mRNA analysis and minigene assay. We also found a small intronic deletion in 6 patients, recently described as causing mild HA. CONCLUSION: With this comprehensive work combining NGS and functional assays, we report new deep intronic variants that cause HA through splicing alteration mechanism. Functional analyses are critical to confirm the pathogenic effect of these variants and will be invaluable in the future to study the large number of variants of uncertain significance that may affect splicing that will be found in the human genome.


Asunto(s)
Biología Computacional/métodos , Factor VIII/genética , Hemofilia A/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Femenino , Humanos , Masculino
6.
Genet Med ; 21(4): 837-849, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30206421

RESUMEN

PURPOSE: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. METHODS: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. RESULTS: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. CONCLUSION: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.


Asunto(s)
Encefalopatías/genética , Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Convulsiones/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encefalopatías/epidemiología , Encefalopatías/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Linaje , Fenotipo , Isoformas de Proteínas/genética , Convulsiones/epidemiología , Convulsiones/fisiopatología , Caracteres Sexuales
7.
Genet Med ; 21(11): 2521-2531, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31092906

RESUMEN

PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.


Asunto(s)
Enfermedades Musculares/genética , Factor de Transcripción PAX7/genética , Adolescente , Alelos , Niño , Preescolar , Femenino , Humanos , Masculino , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Mioblastos , Factor de Transcripción PAX7/metabolismo , Linaje , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Factores de Transcripción/genética , Secuenciación del Exoma/métodos
8.
Ann Neurol ; 83(6): 1089-1095, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518281

RESUMEN

VPS13 protein family members VPS13A through VPS13C have been associated with various recessive movement disorders. We describe the first disease association of rare recessive VPS13D variants including frameshift, missense, and partial duplication mutations with a novel complex, hyperkinetic neurological disorder. The clinical features include developmental delay, a childhood onset movement disorder (chorea, dystonia, or tremor), and progressive spastic ataxia or paraparesis. Characteristic brain magnetic resonance imaging shows basal ganglia or diffuse white matter T2 hyperintensities as seen in Leigh syndrome and choreoacanthocytosis. Muscle biopsy in 1 case showed mitochondrial aggregates and lipidosis, suggesting mitochondrial dysfunction. These findings underline the importance of the VPS13 complex in neurological diseases and a possible role in mitochondrial function. Ann Neurol 2018;83:1089-1095.


Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Espasticidad Muscular/genética , Mutación/genética , Atrofia Óptica/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Ganglios Basales/patología , Encéfalo/patología , Niño , Humanos , Enfermedad de Leigh/patología , Imagen por Resonancia Magnética/métodos , Espasticidad Muscular/patología , Linaje
10.
Brain ; 141(8): 2299-2311, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29985992

RESUMEN

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Asunto(s)
Trastornos del Neurodesarrollo/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Adolescente , Animales , Niño , Preescolar , Femenino , Regulación de la Expresión Génica/genética , Mutación de Línea Germinal , Haploinsuficiencia , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Linfocitos/patología , Linfocitos/fisiología , Masculino , Ratones , Mutación , Proteínas Represoras/metabolismo , Linfocitos T/fisiología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/metabolismo
11.
J Med Genet ; 55(5): 316-321, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29599419

RESUMEN

BACKGROUND: Chitayat-Hall syndrome, initially described in 1990, is a rare condition characterised by distal arthrogryposis, intellectual disability, dysmorphic features and hypopituitarism, in particular growth hormone deficiency. The genetic aetiology has not been identified. METHODS AND RESULTS: We identified three unrelated families with a total of six affected patients with the clinical manifestations of Chitayat-Hall syndrome. Through whole exome or whole genome sequencing, pathogenic variants in the MAGEL2 gene were identified in all affected patients. All disease-causing sequence variants detected are predicted to result in a truncated protein, including one complex variant that comprised a deletion and inversion. CONCLUSIONS: Chitayat-Hall syndrome is caused by pathogenic variants in MAGEL2 and shares a common aetiology with the recently described Schaaf-Yang syndrome. The phenotype of MAGEL2-related disorders is expanded to include growth hormone deficiency as an important and treatable complication.


Asunto(s)
Artrogriposis/genética , Hormona del Crecimiento/genética , Discapacidad Intelectual/genética , Proteínas/genética , Adolescente , Adulto , Artrogriposis/fisiopatología , Niño , Exoma/genética , Femenino , Hormona del Crecimiento/deficiencia , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Linaje , Fenotipo , Secuenciación del Exoma , Adulto Joven
14.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652405

RESUMEN

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Nucleotidiltransferasas/genética , ARN de Transferencia de Serina/metabolismo , Niño , Preescolar , Exoma , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Análisis de Secuencia de ADN , Síndrome
15.
Am J Hum Genet ; 94(2): 268-77, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24388663

RESUMEN

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurological conditions. Their main pathogenic mechanisms are thought to involve alterations in endomembrane trafficking, mitochondrial function, and lipid metabolism. With a combination of whole-genome mapping and exome sequencing, we identified three mutations in REEP2 in two families with HSP: a missense variant (c.107T>A [p.Val36Glu]) that segregated in the heterozygous state in a family with autosomal-dominant inheritance and a missense change (c.215T>A [p.Phe72Tyr]) that segregated in trans with a splice site mutation (c.105+3G>T) in a family with autosomal-recessive transmission. REEP2 belongs to a family of proteins that shape the endoplasmic reticulum, an organelle that was altered in fibroblasts from an affected subject. In vitro, the p.Val36Glu variant in the autosomal-dominant family had a dominant-negative effect; it inhibited the normal binding of wild-type REEP2 to membranes. The missense substitution p.Phe72Tyr, in the recessive family, decreased the affinity of the mutant protein for membranes that, together with the splice site mutation, is expected to cause complete loss of REEP2 function. Our findings illustrate how dominant and recessive inheritance can be explained by the effects and nature of mutations in the same gene. They have also important implications for genetic diagnosis and counseling in clinical practice because of the association of various modes of inheritance to this new clinico-genetic entity.


Asunto(s)
Proteínas de la Membrana/genética , Paraplejía Espástica Hereditaria/genética , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Mapeo Cromosómico , Exoma , Femenino , Heterocigoto , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación Missense , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/patología
16.
Am J Med Genet A ; 173(7): 1887-1890, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28449304

RESUMEN

DNMT3A-Overgrowth Syndrome (also known as Tatton-Brown-Rahman Syndrome) (MIM 615879) has recently been described in 13 individuals with de novo heterozygous mutations in DNMT3A gene. This autosomal dominant condition is characterized by overgrowth, dysmorphic facial features and moderate intellectual disability. Missense and truncating point mutations, a small in-frame deletion, as well as microdeletion 2p23 have been reported. Moreover, DNMT3A is commonly somatically mutated in acute myeloid leukemia. We herein report a family with two siblings and their father affected by the syndrome. The proband is a 12 year-old boy with tall stature, macrocephaly, facial dysmorphism, and intellectual disability. His 10-year-old sister also has learning difficulties, overgrowth and mild facial dysmorphism. Their father is a 49 year-old man with tall stature, macrocephaly, learning difficulties, and minor facial dysmorphism. He had a right occipital osteoma removed at 20 years of age. A heterozygous splice site mutation NM_022552.4 (DNMT3A): c.2323-2A > T was found in the proband by whole exome sequencing analysis and by targeted Sanger Sequencing for the proband's sister and father. This mutation has not been previously reported and is believed to be pathogenic. Indeed, this substitution involves a highly conserved canonical splice site and is predicted to cause exon skipping. This is the first report of a familial transmission of DNMT3A-Overgrowth Syndrome, supporting the autosomal dominant inheritance. The proband's phenotype is more severe than that of his two other affected family members, which illustrates variable expressivity in the syndrome.

18.
Fish Shellfish Immunol ; 62: 332-340, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28159692

RESUMEN

Protease inhibitors are an extremely diverse group of proteins that control the proteolytic activities of proteases and play a crucial role in biological processes including host defenses. The I84 family of protease inhibitors in the MEROPS database currently consists of cvSI-1 and cvSI-2, two novel serine protease inhibitors purified and characterized from the eastern oyster Crassostrea virginica plasma and believed to play a role in host defense and disease resistance. In the present study, a third member of I84 family, named cvSI-3, was identified from C. virginica by cDNA cloning and sequencing. The full cvSI-3 cDNA was composed of 342 bp including a 255 bp open reading frame (ORF) that encodes an 84-amino acid peptide. The mature cvSI-3 molecule was predicted to have 68 amino acid residues after removal of a 16-amino acid signal peptide, with a calculated molecular mass of 7724.5 Da and a theoretical isoelectric point (pI) of 6.28. CvSI-3 amino acid sequence shared 41% identity with cvSI-2 and 37% identity with cvSI-1, which included 12 conserved cysteines. Quantitative real-time PCR determined that cvSI-3 gene expressed primarily in oyster digestive glands. Real-time PCR also detected that cvSI-1, cvSI-2 and cvSI-3 expression levels in digestive glands varied significantly, with cvSI-2 showing the highest expression level and cvSI-3 the lowest. Additionally, a significant correlation was detected between cvSI-2 and cvSI-3 mRNAs levels. Searches into sequence databases using cvSI-1, cvSI-2 and cvSI-3 as queries retrieved ESTs suggesting the possible existence of at least 9 more I84 family members in eastern oysters and of I84 family protease inhibitors in various bivalve and gastropod species. Moreover, orthologs of all C. virginica I84 family members or potential member genes were found to be present in the C. gigas genome, and their distributions among species provided important information about the evolution of the I84 family of protease inhibitors. It appears that the I84 family of protease inhibitors is widely distributed and actively evolving in the Phylum Mollusca.


Asunto(s)
Inhibidores de Serina Proteinasa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Crassostrea , ADN Complementario/genética , ADN Complementario/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo
19.
PLoS Genet ; 10(9): e1004580, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188300

RESUMEN

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos del Conocimiento/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Estudios de Casos y Controles , Niño , Cognición/fisiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Neuronas/fisiología , Sinapsis/genética
20.
Hum Mol Genet ; 23(1): 90-103, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23956174

RESUMEN

An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.


Asunto(s)
Axones/metabolismo , Axones/patología , Trastornos Generalizados del Desarrollo Infantil/genética , Sinapsinas/genética , Vesículas Sinápticas/patología , Animales , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Codón sin Sentido , Femenino , Predisposición Genética a la Enfermedad , Células HeLa , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA