Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394045

RESUMEN

Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Proteínas de la Membrana , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Línea Celular Tumoral , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa del Receptor Axl
2.
J Biol Chem ; 295(39): 13474-13487, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32690605

RESUMEN

Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, ß1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Endosomas/metabolismo , Integrina beta1/metabolismo , Factores de Transcripción/metabolismo , Familia-src Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/deficiencia , Línea Celular , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proto-Oncogenes Mas , Transducción de Señal , Factores de Transcripción/deficiencia , Familia-src Quinasas/deficiencia
3.
Cancer Metastasis Rev ; 39(2): 361-374, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297092

RESUMEN

Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin-Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Animales , Carcinogénesis , Membrana Celular/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Proteínas de la Membrana/biosíntesis , Neoplasias/patología
4.
J Cell Sci ; 132(21)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31604795

RESUMEN

Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of ß1 integrin and of the ß-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular/fisiología , Colágeno/metabolismo , Decorina/metabolismo , Adhesión Celular/fisiología , Matriz Extracelular/metabolismo , Humanos , Fenómenos Mecánicos , Proteína de Unión al GTP cdc42/metabolismo
5.
J Cell Sci ; 131(17)2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30111578

RESUMEN

Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral , Endocitosis , Endosomas/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Lisosomas/genética , Metaloproteinasa 14 de la Matriz/genética , Proteínas de la Membrana/genética , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , Podosomas/genética , Podosomas/metabolismo , Transporte de Proteínas , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
6.
Biol Cell ; 109(5): 210-221, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28225561

RESUMEN

Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Adhesión Celular , Comunicación Celular , Técnicas de Silenciamiento del Gen , beta Catenina/metabolismo
7.
J Cell Sci ; 127(Pt 24): 5139-47, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25413346

RESUMEN

Flotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis. In this Commentary, we summarize the research performed so far on the role of flotillins in cell-cell adhesion. Recent studies have demonstrated that flotillins directly regulate the formation of cadherin complexes. Indeed, flotillin microdomains are required for the dynamic association and stabilization of cadherins at cell-cell junctions and also for cadherin signaling. Moreover, because flotillins regulate endocytosis and also the actin cytoskeleton, they could have an indirect role in the assembly and stabilization of cadherin complexes. Because it has also recently been shown that flotillins are overexpressed during neurodegenerative diseases and in human cancers, where their upregulation is associated with metastasis formation and poor prognosis, understanding to what extent flotillin upregulation participates in the development of such pathologies is thus of particular interest, as well as how, at the molecular level, it might affect cell adhesion processes.


Asunto(s)
Fenómenos Fisiológicos Celulares , Enfermedad , Proteínas de la Membrana/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Humanos , Proteínas de la Membrana/química , Modelos Biológicos
8.
J Cell Sci ; 126(Pt 22): 5293-304, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24046456

RESUMEN

Cadherins are essential in many fundamental processes and assemble at regions of cell-cell contact in large macromolecular complexes named adherens junctions. We have identified flotillin 1 and 2 as new partners of the cadherin complexes. We show that flotillins are localised at cell-cell junctions (CCJs) in a cadherin-dependent manner. Flotillins and cadherins are constitutively associated at the plasma membrane and their colocalisation at CCJ increases with CCJ maturation. Using three-dimensional structured illumination super-resolution microscopy, we found that cadherin and flotillin complexes are associated with F-actin bundles at CCJs. The knockdown of flotillins dramatically affected N- and E-cadherin recruitment at CCJs in mesenchymal and epithelial cell types and perturbed CCJ integrity and functionality. Moreover, we determined that flotillins are required for cadherin association with GM1-containing plasma membrane microdomains. This allows p120 catenin binding to the cadherin complex and its stabilization at CCJs. Altogether, these data demonstrate that flotillin microdomains are required for cadherin stabilization at CCJs and for the formation of functional CCJs.


Asunto(s)
Cadherinas/metabolismo , Uniones Intercelulares/genética , Proteínas de la Membrana/metabolismo , Cadherinas/genética , Cateninas/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Uniones Intercelulares/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Estructura Terciaria de Proteína , Proteínas Activadoras de Esfingolípidos/metabolismo , Catenina delta
9.
Commun Biol ; 7(1): 549, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724689

RESUMEN

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Tejido Nervioso , Proteínas Nucleares , Seudópodos , Proteínas Supresoras de Tumor , Humanos , Animales , Células HeLa , Línea Celular , Actinas/metabolismo , Seudópodos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Celular/metabolismo
10.
J Biol Chem ; 284(34): 23137-45, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19546217

RESUMEN

p120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR. We demonstrate that interaction of p120 catenin with N-cadherin is required for N-cadherin association with LR and for its stabilization at cell contacts. LR disruption inhibits myogenesis induction and N-cadherin-dependent RhoA activation as does the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Finally, we observe an N-cadherin-dependent accumulation of RhoA at phosphatidylinositol 4,5-bisphosphate-enriched cell contacts which is lost after LR disruption. Thus, a functional N-cadherin-catenin complex occurs in cholesterol-rich membrane microdomains which allows the recruitment of RhoA and the regulation of its activity during myogenesis induction.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Desarrollo de Músculos/fisiología , Fosfoproteínas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Cateninas , Moléculas de Adhesión Celular/genética , Línea Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Inmunohistoquímica , Inmunoprecipitación , Uniones Intercelulares/metabolismo , Ratones , Desarrollo de Músculos/genética , Fosfoproteínas/genética , Unión Proteica , Catenina delta
11.
Mol Biol Cell ; 18(5): 1734-43, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17332503

RESUMEN

Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.


Asunto(s)
Cadherinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mioblastos Esqueléticos/metabolismo , Neuropéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Secuencia de Bases , Cadherinas/antagonistas & inhibidores , Adhesión Celular , Fusión Celular , Línea Celular , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Complejos Multiproteicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Proteína de Unión al GTP rac1
12.
Biochem Biophys Res Commun ; 384(3): 322-8, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19409875

RESUMEN

Up-regulation of utrophin, a homolog of dystrophin, is known to ameliorate the dystrophic phenotype in animal models of Duchenne muscular dystrophy. We have previously demonstrated that the active form of RhoA (RhoAV14) increases the expression of utrophin and its localization at the plasma membrane in cultured myoblasts. In this paper, we ask whether RhoAV14 can up-regulate utrophin also in mice. A plasmid encoding for RhoAV14 was injected into skeletal muscles followed by electroporation. Muscles expressing RhoAV14 were analyzed by Western-immunoblotting, real time PCR amplification and immunohistochemistry. We found that RhoAV14 increased utrophin protein expression and distribution specifically at the plasma membrane in muscle fibers without any effect on utrophin transcription. Utrophin up-regulation, uncoupled from that of its mRNA, has been previously observed in pathological processes and in normal regenerating conditions.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Utrofina/metabolismo , Proteínas de Unión al GTP rho/fisiología , Animales , Membrana Celular/metabolismo , Electroporación , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular de Duchenne/terapia , Transfección , Regulación hacia Arriba , Utrofina/genética , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
13.
J Cell Biol ; 158(5): 953-65, 2002 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12213839

RESUMEN

N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.


Asunto(s)
Cadherinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Transactivadores/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Desarrollo de Músculos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/enzimología , Regiones Promotoras Genéticas/genética , Proteínas Tirosina Quinasas/metabolismo , Factores de Tiempo , beta Catenina , Proteínas Quinasas p38 Activadas por Mitógenos , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
Mol Biol Cell ; 17(3): 1194-203, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16381811

RESUMEN

Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Conos de Crecimiento/metabolismo , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Axones/metabolismo , Células COS , Adhesión Celular , Células Cultivadas , Chlorocebus aethiops , Exocitosis , Fusión de Membrana , Metaloendopeptidasas/metabolismo , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Toxina Tetánica/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
15.
Mol Biol Cell ; 17(2): 749-59, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16291866

RESUMEN

The Rho family of GTP-binding proteins plays critical roles during myogenesis induction. To elucidate their role later during myogenesis, we have analyzed RhoA function during myoblast fusion into myotubes. We find that RhoA activity is rapidly and transiently increased when cells are shifted into differentiation medium and then is decreased until myoblast fusion. RhoA activity must be down-regulated to allow fusion, because expression of a constitutively active form of RhoA (RhoAV14) inhibits this process. RhoAV14 perturbs the expression and localization of M-cadherin, a member of the Ca2+-dependent cell-cell adhesion molecule family that has an essential role in skeletal muscle cell differentiation. This mutant does not affect N-cadherin and other proteins involved in myoblast fusion, beta1-integrin and ADAM12. Active RhoA induces the entry of M-cadherin into a degradative pathway and thus decreases its stability in correlation with the monoubiquitination of M-cadherin. Moreover, p120 catenin association with M-cadherin is decreased in RhoAV14-expressing cells, which is partially reverted by the inhibition of the RhoA effector Rho-associated kinase ROCK. ROCK inhibition also restores M-cadherin accumulation at the cell-cell contact sites. We propose that the sustained activation of the RhoA pathway inhibits myoblast fusion through the regulation of p120 activity, which controls cadherin internalization and degradation.


Asunto(s)
Cadherinas/metabolismo , Mioblastos/enzimología , Proteína de Unión al GTP rhoA/fisiología , Proteínas ADAM/metabolismo , Proteína ADAM12 , Animales , Cadherinas/análisis , Cateninas , Moléculas de Adhesión Celular/metabolismo , Fusión Celular , Línea Celular , Integrina beta1/metabolismo , Lisosomas/metabolismo , Ratones , Modelos Biológicos , Mioblastos/citología , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Interferencia de ARN , Proteína de Unión al GTP rhoA/metabolismo , Catenina delta
16.
J Neurosci ; 27(39): 10323-32, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17898204

RESUMEN

During the embryonic development of the hindbrain, movements of neuronal clusters allow the formation of mature "pools", in particular for inferior olivary (ION) and facial motor (fMN) nuclei. The cellular mechanisms of neuron clustering remain uncharacterized. We report that the absence of the Rho-guanine exchange factor Trio, which can activate both RhoG and Rac1 in vivo, prevents the proper formation of ION and fMN subnuclei. Rac1, but not RhoG, appears to be a downstream actor in Trio-induced lamellation. In addition, we report that Cadherin-11 is expressed by a subset of neurons through the overall period of ION and fMN parcellations, and defects observed in trio mutant mice are located specifically in Cadherin-11-expressing regions. Moreover, endogenous Cadherin-11 is found in a complex with Trio when lamellation occurs. Altogether, those results establish a link between Trio activity, the subsequent Rac1 activation, and neuronal clusters organization, as well as a possible recruitment of the Cadherin-11 adhesive receptor to form a complex with Trio.


Asunto(s)
Cadherinas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Neuronas Motoras/fisiología , Neuropéptidos/fisiología , Núcleo Olivar/fisiología , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Rombencéfalo/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Nervio Facial/fisiología , Ratones , Rombencéfalo/embriología , Proteína de Unión al GTP rac1
17.
Biol Cell ; 99(9): 503-17, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17459003

RESUMEN

BACKGROUND INFORMATION: N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in the induction of the skeletal muscle differentiation programme. However, the molecular mechanisms which govern the formation of N-cadherin-dependent cell-cell contacts in myoblasts remain unexplored. RESULTS: In the present study, we show that N-cadherin-dependent cell contact formation in myoblasts is defined by two stages. In the first phase, N-cadherin is highly mobile in the lamellipodia extensions between the contacting cells. The second stage corresponds to the formation of mature N-cadherin-dependent cell contacts, characterized by the immobilization of a pool of N-cadherin which appears to be clustered in the interdigitated membrane structures that are also membrane attachment sites for F-actin filaments. We also demonstrated that the formation of N-cadherin-dependent cell-cell contacts requires a co-ordinated and sequential activity of Rac1 and RhoA. Rac1 is involved in the first stage and facilitates N-cadherin-dependent cell-cell contact formation, but it is not absolutely required. Conversely, RhoA is necessary for N-cadherin-dependent cell contact formation, since, via ROCK (Rho-associated kinase) signalling and myosin 2 activation, it allows the stabilization of N-cadherin at the cell-cell contact sites. CONCLUSIONS: We have shown that Rac1 and RhoA have opposite effects on N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts and act sequentially to allow its formation.


Asunto(s)
Cadherinas/metabolismo , Mioblastos/metabolismo , Proteína de Unión al GTP rac1/fisiología , Proteína de Unión al GTP rhoA/fisiología , Cadherinas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Células Cultivadas , Humanos
18.
Mol Biol Cell ; 16(5): 2168-80, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15716354

RESUMEN

Cadherins are homophilic cell-cell adhesion molecules implicated in cell growth, differentiation, and organization into tissues during embryonic development. They accumulate at cell-cell contact sites and act as adhesion-activated signaling receptors. Here, we show that the dynamic assembly of N-cadherin at cell-cell contacts involves lipid rafts. In C2C12 myoblasts, immunofluorescence and biochemical experiments demonstrate that N-cadherin present at cell-cell contacts is colocalized with lipid rafts. Disruption of lipid rafts leads to the inhibition of cell-cell adhesion and disorganization of N-cadherin-dependent cell-cell contacts without modifying the association of N-cadherin with catenins and its availability at the plasma membrane. Fluorescent recovery after photobleaching experiments demonstrate that at the dorsal plasma membrane, lipid rafts are not directly involved in the diffusional mobility of N-cadherin. In contrast, at cell-cell junctions N-cadherin association with lipid rafts allows its stabilization enabling the formation of a functional adhesive complex. We show that lipid rafts, as homophilic interaction and F-actin association, stabilize cadherin-dependent adhesive complexes. Homophilic interactions and F-actin association of N-cadherin are both required for its association to lipid rafts. We thus identify lipid rafts as new regulators of cadherin-mediated cell adhesion.


Asunto(s)
Cadherinas/metabolismo , Uniones Intercelulares/metabolismo , Microdominios de Membrana/metabolismo , Mioblastos Esqueléticos/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Inmunohistoquímica , Ratones , Modelos Biológicos
19.
Mol Biol Cell ; 13(1): 285-301, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11809840

RESUMEN

Cadherin-mediated cell-cell adhesion is a dynamic process that is regulated during embryonic development, cell migration, and differentiation. Different cadherins are expressed in specific tissues consistent with their roles in cell type recognition. In this study, we examine the formation of N-cadherin-dependent cell-cell contacts in fibroblasts and myoblasts. In contrast to E-cadherin, both endogenous and ectopically expressed N-cadherin shuttles between an intracellular and a plasma membrane pool. Initial formation of N-cadherin-dependent cell-cell contacts results from the recruitment of the intracellular pool of N-cadherin to the plasma membrane. N-cadherin also localizes to the Golgi apparatus and both secretory and endocytotic vesicles. We demonstrate that the intracellular pool of N-cadherin is tightly associated with the microtubule (MT) network and that junction formation requires MTs. In addition, localization of N-cadherin to the cortex is dependent on an intact F-actin cytoskeleton. We show that N-cadherin transport requires the MT network as well as the activity of the MT-associated motor kinesin. In conclusion, we propose that N-cadherin distribution is a regulated process promoted by cell-cell contact formation, which controls the biogenesis and turnover of the junctions through the MT network.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular , Fibroblastos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/inmunología , Actinas/metabolismo , Animales , Cadherinas/genética , Cadherinas/inmunología , Células Cultivadas , Endocitosis , Fibroblastos/ultraestructura , Técnica del Anticuerpo Fluorescente , Aparato de Golgi/metabolismo , Uniones Intercelulares/metabolismo , Cinesinas/inmunología , Ratones , Microscopía Confocal , Microscopía por Video , Microtúbulos/ultraestructura , Ratas , Proteínas Recombinantes de Fusión/análisis , Transfección
20.
Biochem J ; 391(Pt 2): 261-8, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15963030

RESUMEN

The Rho family of small GTPases are signalling molecules involved in cytoskeleton remodelling and gene transcription. Their activities are important for many cellular processes, including myogenesis. In particular, RhoA positively regulates skeletal-muscle differentiation. We report in the present study that the active form of RhoA increases the expression of utrophin, the autosomal homologue of dystrophin in the mouse C2C12 and rat L8 myoblastic cell lines. Even though this RhoA-dependent utrophin increase is higher in proliferating myoblasts, it is maintained during myogenic differentiation. This occurs via two mechanisms: (i) transcriptional activation of the utrophin promoter A and (ii) post-translational stabilization of utrophin. In addition, RhoA increases plasma-membrane localization of utrophin. Thus RhoA activation up-regulates utrophin levels and enhances its localization at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular , Activación Enzimática , Ratones , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Ratas , Transcripción Genética , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA