Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chem Rev ; 121(21): 13620-13697, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644065

RESUMEN

Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.


Asunto(s)
Carbono , Hierro , Carbono/química , Catálisis , Hierro/química , Metales , Nitrógeno/química
2.
Small ; 18(38): e2201712, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026533

RESUMEN

Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .

3.
Chem Soc Rev ; 50(20): 11293-11380, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34661205

RESUMEN

In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.

4.
Small ; 17(16): e2006473, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624397

RESUMEN

A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.


Asunto(s)
Hidrógeno , Catálisis
5.
Small ; 17(16): e2006478, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33739590

RESUMEN

With increasing concerns for global warming, the solar-driven photocatalytic reduction of CO2 into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO2  stockpiles. Herein, a novel single atom-confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single-atomic-site ruthenium center, that is formed by Ru-N/C intercalation in the first coordination shell, attaining synergism in N-Ru-N connection and interfacial carrier transfer. From time resolved fluorescence decay spectra, the average carrier lifetime of the RuSA-mC3 N4 system is found to be higher compared to m-C3 N4 ; the fact uncovering the crucial role of single Ru atoms in promoting photocatalytic reaction system. A high yield of methanol (1500 µmol g-1 cat. after 6 h of the reaction) using water as an electron donor and the reusability of the developed catalyst without any significant change in the efficiency represent the superior aspects for its potential application in real industrial technologies.

6.
Small ; 17(16): e2006477, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783134

RESUMEN

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

7.
Chem Biodivers ; 17(9): e2000342, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32597554

RESUMEN

A variety of 1,3-dihydro-2H-1,4-benzodiazepin-2-one azomethines and 1,3-dihydro-2H-1,4-benzodiazepin-2-one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin-induced seizure model. The prepared 1,3-dihydro-2H-1,4-benzodiazepin-2-one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7-{(E)-[(4-nitrophenyl)methylidene]amino}-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, 7-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, 7-{(E)-[(4-bromo-2,6-difluorophenyl)methylidene]amino}-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one and 7-[(E)-{[3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.


Asunto(s)
Anticonvulsivantes/farmacología , Azepinas/farmacología , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Azepinas/síntesis química , Azepinas/química , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Modelos Moleculares , Estructura Molecular , Picrotoxina/administración & dosificación , Ratas , Ratas Wistar , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Convulsiones/inducido químicamente
8.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272570

RESUMEN

Titanium dioxide (TiO2) thin films were rapidly coated on Corning glass substrates from the precursor solution using the wire-bar technique at the room temperature and then post-annealed at 400, 500 and 600 °C for 1 h under atmospheric conditions. The structural, morphological, optical, wettability and photocatalytic properties of the films were studied. X-ray diffraction analysis confirmed the formation of an anatase TiO2 structure irrespective of the post-annealing temperatures. The optical transparency of the films in the visible range was measured to be > 70%. A water contact angle (WCA) of ~0° was observed for TiO2 thin-film, post-annealed at 400 °C and 500 °C. However, WCA of 40.3° was observed for post-annealed at 600 °C. The photocatalytic dye-degradation using post-annealed thin-film was investigated indicating a steady improvement in the dye-degradation percentage (from 24.3 to 29.4%) with the increase of post-annealing temperature. The demonstrated TiO2 thin-films deposited by wire-bar coating technique showed promises for the manufacturing of large-area cost-effective self-cleaning window glass.


Asunto(s)
Colorantes/química , Titanio/química , Catálisis , Vidrio/química , Fotoquímica/métodos , Soluciones/química , Temperatura , Humectabilidad , Difracción de Rayos X/métodos
10.
Chem Rev ; 116(6): 3722-811, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26935812

RESUMEN

The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis.

11.
J Org Chem ; 82(12): 6232-6241, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28561577

RESUMEN

Unexpected and unusual reactivity of 2-methylimidazolium salts toward aryl-N-sulfonylimines and aryl aldehydes is here reported. Upon reaction with aryl-N-sulfonylimines, the addition product, arylethyl-2-imidazolium-1-tosylamide (3), is formed with moderate to good yields, while upon reaction with aldehydes, the initial addition product (6) observed in NMR and HPLC-MS experimental analysis is postulated by us as an intermediate to the final conversion to carboxylic acids. Studies in the presence and absence of molecular oxygen allow us to conclude that the imidazolium salts is crucial for the oxidation. A detailed mechanistic study was carried out to provide insights regarding this unexpected reactivity.

12.
Small ; 17(16): e2101584, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33882626
13.
Chemistry ; 22(5): 1577-81, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26455725

RESUMEN

A facile synthesis based on the addition of ascorbic acid to a mixture of Na2 PdCl4, K2 PtCl6, and Pluronic P123 results in highly branched core-shell nanoparticles (NPs) with a micro-mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core-shell NPs, which differs from the traditional seed-mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion-like Pd@Pt core-shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro-mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.

14.
Chem Soc Rev ; 44(21): 7540-90, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26288197

RESUMEN

Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.

15.
Acc Chem Res ; 47(4): 1338-48, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24666323

RESUMEN

The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating conditions, wherein temperature is measured accurately by fiber optic (FO) probe. This Account describes the current status of MW-assisted synthesis highlighting the introduction of various prototypes of equipment, classes of organic reactions pursued using nanomaterials, and the synthesis of unique and multifunctional nanomaterials; the ensuing nanomaterials possess zero-dimensional to three-dimensional shapes, such as spherical, hexagonal, nanoprisms, star shapes, and nanorods. The synthesis of well-defined nanomaterials and nanocatalysts is an integral part of nanotechnology and catalysis science, because it is imperative to control their size, shape, and compositional engineering for unique deployment in the field of nanocatalysis and organic synthesis. MW-assisted methods have been employed for the convenient and reproducible synthesis of well-defined noble and transition core-shell metallic nanoparticles with tunable shell thicknesses. Some of the distinctive attributes of MW-selective heating in the synthesis and applications of magnetic nanocatalysts in organic synthesis under benign reaction conditions are highlighted. Sustainable nanomaterials and their applications in benign media are an ideal blend for the development of greener methodologies in organic synthesis; MW heating provides superb value to the overall sustainable process development via process intensification including the flow systems.

16.
Chem Soc Rev ; 42(8): 3371-93, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23420127

RESUMEN

Surface functionalization of nano-magnetic nanoparticles is a well-designed way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles (MNPs) in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation. Magnetite is a well-known material, also known as ferrite (Fe3O4), and can be used as a versatile support for functionalization of metals, organocatalysts, N-heterocyclic carbenes, and chiral catalysts. It is used as a support for important homogeneous catalytically active metals such as Pd, Pt, Cu, Ni, Co, Ir, etc. to obtain stable and magnetically recyclable heterogeneous catalysts. Homogeneous organocatalysts can be successfully decorated with linkers/ligands on the surface of magnetite or alternatively the organocatalysts can be directly immobilized on the surface of magnetite. The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.

17.
Chem Soc Rev ; 42(12): 5522-51, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23529409

RESUMEN

Catalyst-free reactions developed during the last decade and the latest developments in this emerging field are summarized with a focus on catalyst-free reactions in-water and on-water. Various named reactions, multi-component reactions and the synthesis of heterocyclic compounds are discussed including the use of various energy input systems such as microwave- and ultrasound irradiation, among others. Organic chemists and the practitioners of this art both in academia and industry hopefully will continue to design benign methodologies for organic synthesis in aqueous media under catalyst-free conditions by using alternative energy inputs based on fundamental principles.

18.
J Colloid Interface Sci ; 676: 485-495, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39047376

RESUMEN

This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.

19.
Nanoscale ; 15(7): 3482-3495, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723031

RESUMEN

The intriguing features of surface-engineered hexagonal two-dimensional boron nitride (h-BN) nanostructures have captivated the immense interest of researchers working in the arena of materials science. Inspired by striking attributes exhibited by h-BN nanosheets as the support material, we devoted our efforts towards synthesizing a novel magnetically retrievable h-BN/Fe3O4/APTES-AMF/CuII catalytic system, which was then comprehensively characterized using various techniques including SEM, TEM, EDX, SEM-based elemental mapping, ED-XRF, AAS, XRD, FT-IR, VSM, XPS, TGA, and BET. Further, the catalytic potential of h-BN/Fe3O4/APTES-AMF/CuII nanocomposites was investigated in the one-pot multicomponent coupling reaction to gain access to a library of biologically active 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles under ambient conditions. In addition, the use of green solvent, facile magnetic recoverability, and reusability of up to six successive runs made this protocol environmentally benign and economical. This work throws light on the development of covalently functionalized 2D-BN nanostructure-based copper catalysts and establishes its significance in furnishing industrially demanding products that would pave the way towards sustainable chemistry.

20.
ACS Catal ; 13(24): 16067-16077, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125981

RESUMEN

A strategy for the synthesis of a gold-based single-atom catalyst (SAC) via a one-step room temperature reduction of Au(III) salt and stabilization of Au(I) ions on nitrile-functionalized graphene (cyanographene; G-CN) is described. The graphene-supported G(CN)-Au catalyst exhibits a unique linear structure of the Au(I) active sites promoting a multistep mode of action in dehydrogenative coupling of organosilanes with alcohols under mild reaction conditions as proven by advanced XPS, XAFS, XANES, and EPR techniques along with DFT calculations. The linear structure being perfectly accessible toward the reactant molecules and the cyanographene-induced charge transfer resulting in the exclusive Au(I) valence state contribute to the superior efficiency of the emerging two-dimensional SAC. The developed G(CN)-Au SAC, despite its low metal loading (ca. 0.6 wt %), appear to be the most efficient catalyst for Si-H bond activation with a turnover frequency of up to 139,494 h-1 and high selectivities, significantly overcoming all reported homogeneous gold catalysts. Moreover, it can be easily prepared in a multigram batch scale, is recyclable, and works well toward more than 40 organosilanes. This work opens the door for applications of SACs with a linear structure of the active site for advanced catalytic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA