Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 31(8): e02446, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34448316

RESUMEN

Ecological forecasts will be best suited to inform intervention strategies if they are accessible to a diversity of decision-makers. Researchers are developing intuitive forecasting interfaces to guide stakeholders through the development of intervention strategies and visualization of results. Yet, few studies to date have evaluated how user interface design facilitates the coordinated, cross-boundary management required for controlling biological invasions. We used a participatory approach to develop complementary tangible and online interfaces for collaboratively forecasting biological invasions and devising control strategies. A diverse group of stakeholders evaluated both systems in the real-world context of controlling sudden oak death, an emerging forest disease killing millions of trees in California and Oregon. Our findings suggest that while both interfaces encouraged adaptive experimentation, tangible interfaces are particularly well suited to support collaborative decision-making. Reflecting on the strengths of both systems, we suggest workbench-style interfaces that support simultaneous interactions and dynamic geospatial visualizations.


Asunto(s)
Monitoreo del Ambiente/métodos , Predicción , California , Internet , Especies Introducidas , Oregon , Enfermedades de las Plantas , Quercus
2.
Philos Trans R Soc Lond B Biol Sci ; 374(1776): 20180283, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31104598

RESUMEN

Epidemiological models are powerful tools for evaluating scenarios and visualizing patterns of disease spread, especially when comparing intervention strategies. However, the technical skill required to synthesize and operate computational models frequently renders them beyond the command of the stakeholders who are most impacted by the results. Participatory modelling (PM) strives to restructure the power relationship between modellers and the stakeholders who rely on model insights by involving these stakeholders directly in model development and application; yet, a systematic literature review indicates little adoption of these techniques in epidemiology, especially plant epidemiology. We investigate the potential for PM to integrate stakeholder and researcher knowledge, using Phytophthora ramorum and the resulting sudden oak death disease as a case study. Recent introduction of a novel strain (European 1 or EU1) in southwestern Oregon has prompted significant concern and presents an opportunity for coordinated management to minimize regional pathogen impacts. Using a PM framework, we worked with local stakeholders to develop an interactive forecasting tool for evaluating landscape-scale control strategies. We find that model co-development has great potential to empower stakeholders in the design, development and application of epidemiological models for disease control. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.


Asunto(s)
Enfermedades Transmisibles Emergentes , Predicción , Modelos Biológicos , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA