Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803069

RESUMEN

Essential oil-based products with broad plant disease control claims are commercially available and may be a practical alternative to copper fungicides for crop protection in organic mango orchards. We evaluated the disease control efficacy and crop safety of thyme oil, savory oil, and tree tea oil through replicated in vitro, in vivo (detached leaf and potted trees), and field assays. Three Colletotrichum species associated with mango anthracnose were tested in vitro, whereas only C. siamense was used for in vivo assays. Within the range of concentrations tested in vitro (62.5 to 2,000 µl a.i./liter), thyme and savory oil displayed fungicidal activity, whereas no fungistatic or fungicidal activity was observed with tea tree oil. In the in vivo assays, none of the treatments based on a preventive application rate of thyme (1,150 µl a.i./liter), savory (2,000 µl a.i./liter), or tea tree oil (342 µl a.i./liter) were effective in preventing the development of anthracnose on wounded and artificially inoculated leaves. Although field applications of thyme or tea tree oil did not result in phytotoxicity or negative impacts on fruit yield, they were ineffective in reducing the incidence and severity of naturally occurring anthracnose. Applications of copper hydroxide approved for organic agriculture were effective in controlling anthracnose in the field, and no added benefits were found by premixing this compound with thyme oil. Results indicate that essential oil products based on thyme or tea tree oil are inefficient at controlling anthracnose in mangoes.

2.
Plant Dis ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856652

RESUMEN

Monstera deliciosa Liebm. (Araceae, Monocots), sometimes referred to as Swiss cheese plant, is one of the most common aroids used as an indoor and landscape ornamental plant (Cedeño et al. 2020). Production of M. deliciosa and other closely related Araceae species represents an important sector of the ornamental nursery business worldwide. Swiss cheese plant is believed to have originated in the tropical forests of southern Mexico, where its fruit is considered a delicacy due to its sweet, exotic flavor (Cedeño et al. 2020). Since 2019, symptomatic Monstera plants from two plant nurseries and residential properties in South Florida were submitted for disease diagnosis to the Florida Department of Agriculture and Consumer Services, Division of Plant Industry (FDACS-DPI) in Gainesville, Florida, and to the University of Florida, Tropical Research and Education Center Plant Clinic in Homestead, Florida. Symptoms included small chlorotic spots on the leaf surface, which expanded and became brown to reddish-brown often with a yellow halo and produced uredinia with abundant urediniospores. The pathogen was identified morphologically as the rust fungus Pseudocerradoa (=Puccinia) paullula (Syd. & P. Syd.) M. Ebinghaus & Dianese (Pucciniaceae, Basidiomycota) (Ebinghaus et al. 2022), characterized by the production of pseudosuprastomatal uredinia. Uredinospores light-brown and globose, echinulate (1 µm height), reddish to light brown, 24 - 31 µm diameter, with thick walls, 1.5 - 2.5 µm height (n=15). Teliospores 2-celled, light-yellow and ellipsoidal, 23 - 28 × 19 - 24 µm (n =15) were observed in sori appearing as dark-brown leaf spots on the adaxial side of the leaves (e-Xtra Fig. 1). Molecular characterization of the fungal pathogen was based on the small subunit (SSU), internal transcribed spacer (ITS), and large subunit (LSU) of the ribosomal RNA genes (Aime 2006) with the addition of a LSU internal primer specific for the rust species Ppaullula_int-forward 5'ATAGTTATTGGCTTTGATTTACA-3' designed in this study to increase the quality and the sequence read length due to a 3'- ~21-Ts-homopolymer (e-Xtra Fig. 2) (GenBank accession number ON887196, ON887197, OQ275200, OQ275201). In addition to morphological identification, the host plant was identified using the Ribulose-1,5-bisphosphate carboxylase-oxygenase (rbcL) and Maturase K (matK) genes (Fazekas et al. 2012) (GenBank accession numbers ON887189, ON887193, respectively). MegaBlast searches confirmed the morphological identification with 100% identity to M. deliciosa vouchers GQ436772 and MK206496, respectively (Chen et al. 2015). Dried specimens were deposited in the Plant Industry Herbarium Gainesville (PIHG 16226, 16227, 17154, 17155). Molecular identification of the rust pathogen P. paullula was carried out through megaBlast (Chen et al. 2015) searches together with a phylogenetic analysis performed in RAxML v8 (Stamatakis 2014) (e-Xtra Fig. 3). Koch's postulates were performed by using urediniospores, collected from an infected sample and were kept for 7 days at 4 C, as an inoculum source. Healthy rooted M. deliciosa plants were inoculated by rubbing the inoculum on both leaf surfaces at >90% RH, room temperature, 12/12 light cycle. After the incubation period (48 h), plants were placed in a climate-controlled greenhouse and watered twice a week, ~30 C, ~65 RH, 12/12 light cycle. After three weeks, all inoculated plants developed symptoms resembling those observed on the samples submitted for disease diagnosis. Controls did not show symptoms. Spores from the pustules of inoculated plants were identified as P. paullula by both morphology and molecular means. The genus Pseudocerradoa comprises P. paullula and its sister species P. rhaphidophorae (Syd.) M. Ebinghaus & Dianese. Both species can be distinguished by size and coloration of urediniospores and their host range within the Araceae. Pseudocerradoa rhaphidophorae produces smaller urediniospores and only occurs on Rhaphidophora species (Shaw 1995). Pseudocerradoa paullula is not considered fully established in Florida, since the host distribution is mainly restricted to indoors and M. deliciosa is rarely used as an outdoor ornamental (Wunderlin et al. 2023). Here we name the disease caused by P. paullula as "aroid leaf rust", due to its ability to infect several species in this plant family. Other closely related hosts reported as susceptible to this pathogen are Monstera standleyana G.S.Bunting (as M.s. cv. variegata), Monstera adansonii var. laniata (Schott) Mayo & I.M. Andrade, Monstera subpinnata (Schott) Engl., Typhonodorum lindleyanum Schott, and Stenospermation sp. (Shaw 1991, 1992, 1995). To date, the aroid leaf rust was only known from Australia, China, Japan, Malaysia, and Philippines (Lee et al. 2012; Shaw 1991). Based on our review, P. paullulla was intercepted once from Malaysia in 2014 at the port of Los Angeles, USA (BPI voucher 893085). This present study reports the establishment of P. paullula in Florida, USA infecting M. deliciosa.

3.
Plant Dis ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755418

RESUMEN

Epipremnum pinnatum (L.) Engl., (Araceae, Monocots) known as dragon-tail plant or centipede tongavine, is the most cultivated aroid species worldwide (Boyce 2004). In 2022, symptomatic dragon-tail plants, collected from plant nurseries in south Florida (e-Xtra Fig.1). Symptoms included round leaf spots often with a yellow halo and erupting pustules mainly distributed in the underside of the leaves. Visits to the nurseries revealed a 60% incidence of approximability 50 mature plants, with some leaves showing up to 30% of tissue damage. The putative pathogen was identified morphologically as Pseudocerradoa paullula (Syd. & P. Syd.) M. Ebinghaus & Dianese (Pucciniaceae, Basidiomycota) (Ebinghaus et al. 2022), characterized by the production of pseudosuprastomatal uredinia with globose to subglobose urediniospores, light-brown, echinulate (1 µm height), 24-31 µm diam with thick walls, 1.5-2.5 µm in height (n=30). Identical morphological features reported by Urbina et al. (2023) (e-Xtra Fig. 1). PCR amplification followed by Sanger sequencing of the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal RNA genes (Aime 2006) together with LSU internal species specific primer (Urbina et al. 2023) were used to confirm the identification of the pathogen (GenBank ON887194-ON887196). MegaBlast (Chen et al. 2015) searches resulted in a >99% sequence similarity to a P. paullula specimen collected in Florida (2019-101665, GenBank ON887197). Host identification was made by using the Ribulose-1,5-bisphosphate carboxylase-oxygenase (rbcL. GenBank ON887186, ON887187) and Maturase K (matK) loci (GenBank ON887190, ON887191) (Fazekas et al. 2012). Both barcodes resulted in >99.13% sequence similarity to voucher J.R. Abbott 24912 FLAS (GenBank GU135198 and GU135036, respectively). Symptomatic dried specimens were deposited in the Plant Industry Herbarium (PIHG 16229 - 16232). Koch's postulates were fulfilled using urediniospores collected from an infected E. pinnatum sample that was kept in darkness at 4°C for seven days until inoculation. Eight potted dragon-tail plants were inoculated by hand rubbing urediniospores against upper and lower leaf surfaces and three plants were used as controls. All plants were misted with sterile water and covered with plastic bags (23 °C, >90% RH, 12/12 h daylight). Bags were removed 48 h after inoculation, plants were set in a climate-controlled greenhouse (~30 °C, ~65% RH, 12/12 h light cycle) and monitored daily for symptoms. Chlorotic spots appeared after 10 days, and pustules after 25 days while the non-inoculated controls remained symptomless. Aroid leaf rust is known to infect several aroid species, including dragon-tail (Shaw 1995), which some varieties capable to outdoors in USDA 9a hardiness zones (Wunderlin et al. 2023), but the rust fungus has not been observed on any species of Epipremnum in the landscape yet, suggesting that its susceptibility could be driven by plant growth conditions that favor pathogen infection (e.g., excess of humidity and nutrients, dense planting, overhead irrigation, etc.). Here we encourage dragon-tail plant growers to be aware of its susceptibility to P. paullula and to stay vigilant of the culture conditions to avoid plants from getting infected with this airborne pathogen.

4.
J Nat Prod ; 85(5): 1363-1373, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35500108

RESUMEN

The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.


Asunto(s)
Ciclosporinas , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Mamíferos , Estructura Molecular , Familia de Multigenes , Peptaiboles
5.
Mycorrhiza ; 32(5-6): 465-480, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36210381

RESUMEN

The south Florida pine rocklands is a critically endangered, fire-dependent ecosystem dominated by the overstory tree Pinus densa (South Florida slash pine). Because pine recruitment in this ecosystem has proven problematic, restoration efforts need to include replanting slash pine trees. Even though ectomycorrhizal fungi are known to be critical symbionts of young pines and are necessary for the development of healthy pines, virtually nothing is known about these mutualists and their role in pine establishment and survival in the pine rocklands. One approach to improve pine establishment is to grow seedlings in a nursery before outplanting, facilitating early associations with ectomycorrhizae, and therefore improving seedling health. In this study, we compared health metrics (height, stem diameter, final needle length, root length, root colonization, needle greenness, root volume, and root:shoot ratio) of seedlings grown in soil amended with five commercially available mycorrhizal inocula versus field soil collected from three pine rockland fragments. Seedlings grown with native field soil from the pine rocklands generally performed better than those grown with commercial inoculum in all metrics except root length. According to their labels, each commercial inoculum contained between 4 and 10 ectomycorrhizal fungi species. However, no ectomycorrhizal fungi were recovered from two of the inoculum products and only three ectomycorrhizal fungi in total were recovered from the other three products. In contrast, seedlings grown with field soil are associated with ten ectomycorrhizal species. Our results highlight the importance of incorporating native ectomycorrhizal fungi into pine seedling replanting as part of restoration efforts in the pine rocklands.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Pinus/microbiología , Plantones/microbiología , Suelo
6.
Plant Dis ; 106(12): 3027-3032, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35668059

RESUMEN

One negative consequence of international trade of agricultural commodities is the inadvertent global spread of crop diseases. Yam (Dioscorea spp.) is a staple food crop in many countries and is traded globally. Most of the commercially traded yams in the United States are imported. In late 2020, samples of yam tubers from a commercial facility were submitted to the plant diagnostic clinic at the UF/IFAS Tropical Research and Education Center in Homestead, Florida. Samples showed rotten symptoms and were drawn from lots that were marked to be destroyed because the source of the rotting symptoms was unknown. Preliminary isolation showed that a fungus was consistently associated with the symptoms and was confirmed in the subsequent pathogenicity test as the causal agent. The fungus grew profusely on potato dextrose agar (PDA) with highly melanized hyphae. Matured conidia showed longitudinal striations. Based on its growth pattern and morphology, it was suspected that this fungus may be in the genus Lasiodiplodia. DNA-based identification using partial sequences of the internal transcribed spacer (ITS), ß-tubulin (TUB2), 28S rDNA (LSU), and elongation factor alpha (EF1-α) genes confirmed the identity of the isolates as Lasiodiplodia iraniensis Abdollahz., Zare & A.J.L. Phillips (synonym: L. iranensis). This is the first report of L. iraniensis affecting yam and has implications for international trade. This finding will provide an important foundation for making quarantine decisions to prevent spread of this disease.


Asunto(s)
Ascomicetos , Dioscorea , Cuarentena , Comercio , Internacionalidad , Ascomicetos/genética , Florida
7.
Plant Dis ; 104(5): 1433-1438, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32155113

RESUMEN

Since the 2000s, production of pitahaya (Hylocereus spp.) has increased significantly in South Florida. However, very limited information is available on the main diseases affecting this crop, particularly in regard to disease epidemiology and economic impact on the commodity. In this study, we surveyed five local pitahaya orchards and documented the most prevalent diseases and their causal agents. Three genera of fungal pathogens (Neoscytalidium, Alternaria, and Colletotrichum) were the major groups associated with symptoms on pitahaya cladodes (stems) during the early growing season. Among these, N. dimidiatum was identified as the most prevalent pathogen, with an overall isolation frequency of 29.8% (range, 13.9 to 47.2%). Hence, the temporal progress of N. dimidiatum stem canker infection was monitored and the relationship between stem canker intensity (incidence and severity) and fruit canker incidence was investigated. A significant positive correlation was found between fruit canker incidence and the standardized area under the disease incidence or severity curve on cladodes, suggesting that high stem canker intensity in the early season may contribute to high fruit canker incidence and thereby impact the aesthetic and market value of fruits. In vitro assays showed that both conidial germination and mycelial growth of N. dimidiatum are positively correlated with increasing temperature, with a maximum growth area at 32°C. This finding suggests a higher risk of infection, under an environment with high temperatures, which is common in South Florida. Data obtained in this study represent baseline knowledge for the future development of integrative management programs for controlling major diseases of pitahaya in South Florida.


Asunto(s)
Epidemias , Frutas , Florida , Enfermedades de las Plantas , Prevalencia
8.
Phytopathology ; 109(11): 1888-1899, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31290729

RESUMEN

The Corynespora leaf fall disease of rubber trees, caused by the necrotrophic fungus Corynespora cassiicola, is responsible for important yield losses in Asian and African plantations, whereas its impact is negligible in South America. The objective of this study was to identify potential antagonists of C. cassiicola among fungal endophytes (i.e., Pestalotiopsis, Colletotrichum, and Trichoderma spp.) isolated from wild and cultivated rubber trees distributed in the Peruvian Amazon. We first tested the endophytes in dual in vitro confrontation assays against a virulent C. cassiicola isolate (CCP) obtained from diseased rubber trees in the Philippines. All Trichoderma isolates overran the CCP colony, suggesting some antagonistic mechanism, while species from the other genera behaved as mutual antagonists. Trichoderma isolates were then tested through antibiosis assays for their capacity to produce growth-inhibiting molecules. One isolate (LA279), recovered as an endophyte from a wild Hevea guianensis specimen and identified as Trichoderma koningiopsis, showed significant antibiosis capacity. We demonstrated that LA279 was also able to endophytically colonize the cultivated rubber tree species (H. brasiliensis). Under controlled laboratory conditions, rubber plants were inoculated with three Trichoderma strains, including LA279, in combination with the pathogenic CCP. Results showed that 1 week preinoculation with the endophytes differentially reduced CCP mycelial development and symptoms. In conclusion, this study suggests that T. koningiopsis isolate LA279-and derivate compounds-could be a promising candidate for the biological control of the important rubber tree pathogen C. cassiicola.


Asunto(s)
Ascomicetos , Endófitos , Hevea , Enfermedades de las Plantas , Ascomicetos/fisiología , Endófitos/fisiología , Filipinas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , América del Sur
9.
Proc Natl Acad Sci U S A ; 112(41): 12764-9, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26385966

RESUMEN

Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.


Asunto(s)
Clasificación/métodos , Filogenia , Animales , Humanos
10.
Mycologia ; 107(2): 284-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25572095

RESUMEN

Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys.


Asunto(s)
Basidiomycota/aislamiento & purificación , Biodiversidad , Endófitos/aislamiento & purificación , Hevea/microbiología , Hojas de la Planta/microbiología , Madera/microbiología , Basidiomycota/clasificación , Basidiomycota/genética , Endófitos/clasificación , Endófitos/genética , Datos de Secuencia Molecular , Filogenia
11.
Mycologia ; 107(3): 558-590, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25661720

RESUMEN

Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture 'T. harzianum T22' was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex.


Asunto(s)
Inoculantes Agrícolas/clasificación , Trichoderma/clasificación , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/crecimiento & desarrollo , Inoculantes Agrícolas/aislamiento & purificación , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/genética , Control Biológico de Vectores/economía , Filogenia , Microbiología del Suelo , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , Trichoderma/aislamiento & purificación
12.
Mycologia ; 106(6): 1090-105, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987126

RESUMEN

The objective of this study was to identify a group of unknown endophytic fungal isolates from the living sapwood of wild and planted Hevea (rubber tree) populations. Three novel lineages of Tolypocladium are described based on molecular and morphological data. Findings from this study open a window for novel hypotheses regarding the ecology and role of endophytes within plant communities as well as trait evolution and potential forces driving diversification of Cordyceps-like fungi. This study stresses the importance of integrating asexual and sexual fungal states for a more complete understanding of the natural history of this diverse group. In addition, it highlights the study of fungi in the sapwood of tropical trees as habitat for the discovery of novel fungal lineages and substrate associations.


Asunto(s)
Hevea/microbiología , Hypocreales/clasificación , Evolución Biológica , Cordyceps , Ecología , Endófitos , Especificidad del Huésped , Hypocreales/genética , Hypocreales/aislamiento & purificación , Hypocreales/fisiología , Filogenia , Análisis de Secuencia de ADN , Esporas Fúngicas , Simbiosis
13.
Microbiol Resour Announc ; 12(6): e0019023, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37191557

RESUMEN

We present a draft genome sequence of Elsinoe perseae, an economically important plant pathogen of commercially grown avocados. The 23.5-Mb assembled genome consists of 169 contigs. This report represents an important genomic resource to guide future research aimed at understanding the genetic interactions of E. perseae with its host.

14.
Microbiol Resour Announc ; 12(4): e0104022, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36877060

RESUMEN

Thirteen draft genome assemblies are presented for four Colletotrichum gloeosporioides complex species, namely, Colletotrichum aeschynomenes, Colletotrichum asianum, Colletotrichum fructicola, and Colletotrichum siamense, which were isolated from tropical tree hosts as endophytes.

15.
Microbiologyopen ; 11(3): e1286, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35765178

RESUMEN

Symbioses between Geosmithia fungi and wood-boring and bark beetles seldom result in disease induction within the plant host. Yet, exceptions exist such as Geosmithia morbida, the causal agent of Thousand Cankers Disease (TCD) of walnuts and wingnuts, and Geosmithia sp. 41, the causal agent of Foamy Bark Canker disease of oaks. Isolates of G. obscura were recovered from black walnut trees in eastern Tennessee and at least one isolate induced cankers following artificial inoculation. Due to the putative pathogenicity and lack of recovery of G. obscura from natural lesions, a molecular diagnostic screening tool was developed using microsatellite markers mined from the G. obscura genome. A total of 3256 candidate microsatellite markers were identified (2236, 789, 137 di-, tri-, and tetranucleotide motifs, respectively), with 2011, 703, 101 di-, tri-, and tetranucleotide motifs, respectively, containing markers with primers. From these, 75 microsatellite markers were randomly selected, screened, and optimized, resulting in 28 polymorphic markers that yielded single, consistently recovered bands, which were used in downstream analyses. Five of these microsatellite markers were found to be specific to G. obscura and did not cross-amplify into other, closely related species. Although the remaining tested markers could be useful, they cross-amplified within different Geosmithia species, making them not reliable for G. obscura detection. Five novel microsatellite markers (GOBS9, GOBS10, GOBS41, GOBS43, and GOBS50) were developed based on the G. obscura genome. These species-specific microsatellite markers are available as a tool for use in molecular diagnostics and can assist future surveillance studies.


Asunto(s)
Escarabajos , Hypocreales , Juglans , Enfermedades de las Plantas , Animales , Escarabajos/microbiología , Hypocreales/genética , Juglans/microbiología , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/microbiología , Tennessee
16.
Mol Ecol ; 20(14): 3001-13, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21557783

RESUMEN

The estimation of species diversity in fungal endophyte communities is based either on species counts or on the assignment of operational taxonomic units (OTUs). Consequently, the application of different species recognition criteria affects not only diversity estimates but also the ecological hypotheses that arise from those observations. The main objective of the study was to examine how the choice and number of genetic markers and species delimitation criteria influence biodiversity estimates. Here, we compare approaches to defining species boundaries in three dominant species complexes of tropical endophytes, specially Colletotrichum gloeosporioides agg., Pestalotiopsis microspora agg. and Trichoderma harzianum agg., from two Amazonian trees: Hevea brasiliensis and H. guianensis. Molecular tools were used to describe and compare the diversity of the different assemblages. Multilocus phylogenetic analyses [gpd, internal transcribed spacer (ITS) and tef1] and modern techniques for phylogenetic species delimitation were overlaid with ecological data to recognize putative species or OTUs. The results demonstrate that ITS alone generally underestimates the number of species predicted by other nuclear loci. These results question the use of ITS and arbitrary divergence thresholds for species delimitation.


Asunto(s)
Biodiversidad , Endófitos/clasificación , Hongos/clasificación , Especiación Genética , Hevea/microbiología , Filogenia , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Endófitos/genética , Hongos/genética , Especificidad de la Especie , Árboles/microbiología
18.
Mycologia ; 103(1): 139-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20943534

RESUMEN

A new species of Trichoderma (teleomorph Hypocrea, Ascomycota, Sordariomycetes, Hypocreales, Hypocreaceae), T. amazonicum, endophytic on the living sapwood and leaves of Hevea spp. trees is described. Trichoderma amazonicum is distinguished from closely related species in the Harzianum clade (e.g. Hypocrea alni, H. brunneoviridis, H. epimyces, H. parepimyces, T. aggressivum, T. harzianum, T. pleuroticola and T. pleuroti) by morphological and ecological characteristics and phylogenetic analysis of three loci (ITS nrDNA, tef1 and rpb2). The closest relatives of this species are the facultatively fungicolous species T. pleuroticola and T. pleuroti.


Asunto(s)
Hevea/microbiología , Trichoderma/clasificación , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Perú , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Ribosómico 5.8S/química , ARN Ribosómico 5.8S/genética , Alineación de Secuencia , Trichoderma/genética , Trichoderma/aislamiento & purificación , Trichoderma/ultraestructura
19.
Biol Rev Camb Philos Soc ; 95(2): 409-433, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31763752

RESUMEN

Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.


Asunto(s)
Hongos/fisiología , Plantas/microbiología , Animales , Bases de Datos Factuales , Ecosistema , Hongos/genética
20.
Environ Entomol ; 48(4): 882-893, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145452

RESUMEN

Thousand cankers disease (TCD) results from the combined activity of the fungal pathogen, Geosmithia morbida Kolarík, Freeland, Utley, and Tisserat and its principle vector, Pityophthorus juglandis (Blackman) (Coleoptera: Curculionidae: Scolytinae) in Juglans L. spp. and Pterocarya Kunth spp. host plants. TCD has been reported from the eastern and western United States. To evaluate potential for other beetle species to vector the fungus in east Tennessee, specimens were collected using ethanol-baited traps that were suspended beneath crowns of TCD-symptomatic trees. Associations of G. morbida with insect species collected in traps were assessed in an unsuccessful, preliminary culture-based fungal assay, and then with a molecular-based detection method. For culture-based assays, rinsate from washed, individual insects was plated on nutrient media and growing colonies were subcultured to obtain axenic G. morbida cultures for identification. For the molecular-based method, G. morbida presence was detected by amplifying the previously developed, species-specific microsatellite locus GS004. Capillary electrophoresis was used to detect the amplified amplicons and representative reactions were validated using Sanger sequencing. Eleven beetle species were found to carry G. morbida, including Cnestus mutilatus (Blandford), Dryoxylon onoharaensum (Murayama), Hylocurus rudis (LeConte), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xylosandrus crassiusculus (Motschulsky), Xylosandrus germanus (Blandford) (all Coleoptera: Curculionidae: Scolytinae), Stenomimus pallidus (Boheman) (Coleoptera: Curculionidae: Cossoninae), Oxoplatypus quadridentatus (Olivier) (Coleoptera: Curculionidae: Platypodinae), and Xylops basilaris (Say) (Coleoptera: Bostrichidae). These findings raise concerns that alternative subcortical insect species that already occur within quarantined habitats can sustain incidence of introduced G. morbida and contribute to spread within the native range of black walnut, Juglans nigra L., in the eastern United States.


Asunto(s)
Escarabajos , Juglans , Gorgojos , Animales , Ecosistema , Insectos Vectores , Tennessee
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA