Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838746

RESUMEN

The nylon 12 (PA12) monomer ω-aminododecanoic acid (ω-AmDDA) could be synthesized from lauric acid (DDA) through multi-enzyme cascade transformation using engineered E. coli, with the P450 catalyzing terminal hydroxylation of DDA as a rate-limiting enzyme. Its activity is jointly determined by the heme domain and the reductase domain. To obtain a P450 mutant with higher activity, directed evolution was conducted using a colorimetric high-throughput screening (HTS) system with DDA as the real substrate. After two rounds of directed evolution, a positive double-site mutant (R14R/D629G) with 90.3% higher activity was obtained. Molecular docking analysis, kinetic parameter determination and protein electrophoresis suggested the improved soluble expression of P450 resulting from the synonymous mutation near the N-terminus and the shortened distance of the electron transfer between FMN and FAD caused by D629G mutation as the major reasons for activity improvement. The significantly increased kcat and unchanged Km provided further evidence for the increase in electron transfer efficiency. Considering the important role of heme in P450, its supply was strengthened by the metabolic engineering of the heme synthesis pathway. By combining P450-directed evolution and enhancing heme synthesis, 2.02 ± 0.03 g/L of ω-AmDDA was produced from 10 mM DDA, with a yield of 93.6%.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Escherichia coli , Sistema Enzimático del Citocromo P-450/metabolismo , Simulación del Acoplamiento Molecular , Escherichia coli/metabolismo , Hidroxilación , Hemo/química
2.
Mar Policy ; 153: 105631, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37152075

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact on the entire cruise industry. This research aims to provide an understanding of the impacts of COVID-19 on the cruise industry from various stakeholders and recommend corresponding post-COVID recovery strategies for building a sustainable cruise industry. By conducting 22 semi-structured interviews in Shanghai, China and analysing the interview data using content analysis, this research finds five aspects of the impacts that are worth discussing, namely social, health and well-being, regulatory, operational, and financial aspects. Key findings include the impacts of different stakeholders' opinions, the problems existing in the current cruise industry, and the potential for future improvement. Recommendations and recovery strategies are proposed to mitigate the negative impacts. This research not only explores the impact of COVID-19 on cruise tourism and fosters recommendations in the most fast-developing region (China) but also facilitates researchers and policymakers to understand the effects of the pandemic and proposes future risk mitigation strategies.

3.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807325

RESUMEN

Tin-based nanocomposite materials embedded in carbon frameworks can be used as effective negative electrode materials for lithium-ion batteries (LIBs), owing to their high theoretical capacities with stable cycle performance. In this work, a low-cost and productive facile hydrothermal method was employed for the preparation of a Sn/C nanocomposite, in which Sn particles (sized in nanometers) were uniformly dispersed in the conductive carbon matrix. The as-prepared Sn/C nanocomposite displayed a considerable reversible capacity of 877 mAhg-1 at 0.1 Ag-1 with a high first cycle charge/discharge coulombic efficiency of about 77%, and showed 668 mAh/g even at a relatively high current density of 0.5 Ag-1 after 100 cycles. Furthermore, excellent rate capability performance was achieved for 806, 697, 630, 516, and 354 mAhg-1 at current densities 0.1, 0.25, 0.5, 0.75, and 1 Ag-1, respectively. This outstanding and significantly improved electrochemical performance is attributed to the good distribution of Sn nanoparticles in the carbon framework, which helped to produce Sn/C nanocomposite next-generation negative electrodes for lithium-ion storage.

4.
Nanotechnology ; 32(15): 155503, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33395679

RESUMEN

Various gas sensors have made considerable improvements to the quality of people's lives. However, in most cases, changing of materials is necessary to adapt to the changing of the target gas, which limits the further application of gas sensors. To meet this challenge, in this work, molecular imprinting (MI) technology is introduced. Acrylic acid is used as a functional monomer, while gas molecules, including acetone, are used as templates. The MI process with an acetone template helps improve the acetone selectivity of TiO2 by up to 1.74-2.80 times. Moreover, it proved that other templates can increase the corresponding selectivity by at least 1.5 times by using the same matrix material. These results demonstrate the potential importance of the MI process in constructing a highly compatible gas sensor industry. Beyond this, the MI process has proved to achieve an ultrahigh specific surface area of 384.36 m2 · g-1. The optimal acetone sensor exhibits desirable comprehensive performance compared with other reports. An excellent TiO2 based prototype acetone sensor working at 300 °C with a low detection limit of 18 ppb is obtained.

5.
Chaos ; 31(11): 113123, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34881597

RESUMEN

Although the world container shipping network (WCSN) has gradually been shaped with ever-increasing complexity in link evolution over the last decades, its evolving mechanism remains to be unveiled. This motivates us to explore the evolutionary pattern of the WCSN, which can be achieved by advancing the existing link prediction models. Using the k-shell decomposition method, the network hierarchy can be decomposed and evaluated by four indices which are KS-Salton, KS-AA, KS-RA, and KS-LRW. The results show that the network hierarchy depends largely on trade patterns and demonstrates certain geographic characteristics. Meanwhile, the KS-LRW index performs best and, therefore, is further simulated for the future WCSN by predicting its top 1677 potential edges, which significantly enhances the overall network connectivity and efficiency. These findings create profound implications for shipping companies to strategically reduce the trail cost for new lines by analyzing the network data.

6.
Metab Eng ; 62: 172-185, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32927060

RESUMEN

Biosynthesis of Nylon 12 monomer using dodecanoic acid (DDA) or its esters as the renewable feedstock typically involves ω-hydroxylation, oxidation and ω-amination. The dependence of hydroxylation and oxidation-catalyzing enzymes on redox cofactors, and the requirement of L-alanine as the co-substrate and pyridoxal 5'-phosphate (PLP) as the coenzyme for transamination, raise the issue of redox imbalance and cofactor shortage, challenging the development of efficient biocatalysts. Simultaneous regeneration of the redox equivalents, PLP and L-alanine required in the artificial pathway was enabled by its interfacing with the native metabolism of the host using glucose dehydrogenase (GDH), L-alanine dehydrogenase (AlaDH) and an exogenous ribose 5-phosphate (R5P)-dependent PLP synthesis pathway as bridges. Further engineering of the host by blocking ß-oxidation and enhancing substrate uptake improved the ω-aminododecanoic acid (ω-AmDDA) yield to 96.5%. This study offers a strategy to resolve the cofactor imbalance issue commonly encountered in whole-cell biocatalysis and meanwhile lays a solid foundation for Nylon 12 bioproduction.


Asunto(s)
Coenzimas , Nylons , Biocatálisis , Vías Biosintéticas , Coenzimas/metabolismo
7.
J Colloid Interface Sci ; 663: 251-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401445

RESUMEN

Electricity generation by natural water evaporation generators (NWEGs) using porous materials shows great potential for energy harvesting, but mechanistic investigations of NWEGs have mostly been limited to streaming potential studies. In this study, we propose the coexistence of an evaporation potential and streaming potential in a NWEG using ZSM-5 as the generation material. The iron probe method, salt concentration regulation, solution regulation, and side evaporation area regulation were used to analyze the NWEG mechanism. Our findings revealed that a streaming potential formed as water flowed inside the ZSM-5 nanochannels, driven by electrodynamic effects that increased from the bottom to the top of the generator. In addition, an evaporation potential existed at the surface interface between ZSM-5 and water, which decreased from the bottom to the top as the evaporation height of the generator increased. The resulting open-circuit voltage (Voc) depended on the balance between the evaporation and streaming potentials, both of which were influenced by the evaporation enthalpy (Ee) or vapor pressure. Generally, a higher Ee or lower vapor pressure led to a lower evaporation potential and subsequently a lower Voc. A dual mechanism involving synergistic evaporation potential and streaming potential is proposed to explain the mechanism of NWEGs.

8.
IEEE Robot Autom Lett ; 9(2): 1166-1173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38292408

RESUMEN

Head and neck cancers are the seventh most common cancers worldwide, with squamous cell carcinoma being the most prevalent histologic subtype. Surgical resection is a primary treatment modality for many patients with head and neck squamous cell carcinoma, and accurately identifying tumor boundaries and ensuring sufficient resection margins are critical for optimizing oncologic outcomes. This study presents an innovative autonomous system for tumor resection (ASTR) and conducts a feasibility study by performing supervised autonomous midline partial glossectomy for pseudotumor with millimeter accuracy. The proposed ASTR system consists of a dual-camera vision system, an electrosurgical instrument, a newly developed vacuum grasping instrument, two 6-DOF manipulators, and a novel autonomous control system. The letter introduces an ontology-based research framework for creating and implementing a complex autonomous surgical workflow, using the glossectomy as a case study. Porcine tongue tissues are used in this study, and marked using color inks and near-infrared fluorescent (NIRF) markers to indicate the pseudotumor. ASTR actively monitors the NIRF markers and gathers spatial and color data from the samples, enabling planning and execution of robot trajectories in accordance with the proposed glossectomy workflow. The system successfully performs six consecutive supervised autonomous pseudotumor resections on porcine specimens. The average surface and depth resection errors measure 0.73±0.60 mm and 1.89±0.54 mm, respectively, with no positive tumor margins detected in any of the six resections. The resection accuracy is demonstrated to be on par with manual pseudotumor glossectomy performed by an experienced otolaryngologist.

9.
Front Endocrinol (Lausanne) ; 14: 1076640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843593

RESUMEN

Background: BRAF mutation is one of the most common genetic alterations contributing to the initiation and progression of papillary thyroid carcinoma (PTC). However, the prognostic value of BRAF mutation for PTC is limited. Novel markers are needed to identify BRAF-mutant patients with poor prognosis. Methods: Transcriptional expression data were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Pathway enrichment was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA). Protein-protein interaction networks were predicted by the GeneMANIA. The correlation between STRA6 expression and immune infiltration was analyzed by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Immunohistochemistry was used to detect the STRA6 protein expression level of PTC. Infiltration of regulatory T cells (Tregs) and CD8+ T cells in tumor samples were analyzed by fluorescent multiplex immunohistochemistry. Results: In BRAF-mutant PTC, STRA6 was extremely upregulated and predicted unfavorable survival, which was an independent risk factor for increased mortality risk. Bioinformatic analyses indicated that STRA6 might activate the MAPK pathway synergistically with BRAFV600E. The expression of STRA6 was associated with immune infiltrates and T cell exhaustion. Fluorescent multiplex immunohistochemistry showed that STRA6 increased Tregs abundance and decreased CD8+ T cells infiltration in PTC. Moreover, STRA6 promoted epithelial-mesenchymal transition via increased cancer-associated fibroblasts infiltration. Conclusions: Our study demonstrates STRA6 may serve as a prognostic marker for BRAF-mutated PTC, which may drive thyroid carcinogenesis via activation of oncogenic pathway and regulation of tumor immunosuppressive microenvironment.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/patología , Proteínas Proto-Oncogénicas B-raf/genética , Pronóstico , Carcinoma Papilar/patología , Microambiente Tumoral/genética , Proteínas de la Membrana/genética
10.
Mater Horiz ; 10(3): 1030-1041, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36692087

RESUMEN

Data-centric tactics with in-sensor computing go beyond the conventional computing-centric tactic that is suffering from processing latency and excessive energy consumption. The multifunctional intelligent matter with dynamic smart responses to environmental variations paves the way to implement data-centric tactics with high computing efficiency. However, intelligent matter with humidity and temperature sensitivity has not been reported. In this work, a design is demonstrated based on a single memristive device to achieve reconfigurable temperature and humidity sensations. Opposite temperature sensations at the low resistance state (LRS) and high resistance state (HRS) were observed for low-level sensory data processing. Integrated devices mimicking intelligent electronic skin (e-skin) can work in three modes to adapt to different scenarios. Additionally, the device acts as a humidity-sensory artificial synapse that can implement high-level cognitive in-sensor computing. The intelligent matter with reconfigurable temperature and humidity sensations is promising for energy-efficient artificial intelligence (AI) systems.

11.
Materials (Basel) ; 15(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35407807

RESUMEN

Tin oxide (SnO2) and tin-based composites along with carbon have attracted significant interest as negative electrodes for lithium-ion batteries (LIBs). However, tin-based composite electrodes have some critical drawbacks, such as high volume expansion, low capacity at high current density due to low ionic conductivity, and poor cycle stability. Moreover, complex preparation methods and high-cost carbon coating procedures are considered main challenges in the commercialization of tin-based electrodes for LIBs. In this study, we prepared a Sn/SnO2/C nano-composite structure by employing a low-cost hydrothermal method, where Sn nanoparticles were oxidized in glucose and carboxymethyl cellulose CMC was introduced into the solution. Scanning electron microscope (SEM) and transmission electron microscope revealed the irregular structure of Sn nanoparticles and SnO2 phases in the conductive carbon matrix. The as-prepared Sn/SnO2/C nano-composite showed high first-cycle reversible discharge capacity (2248 mAhg-1) at 100 mAg-1 with a first coulombic efficiency of 70%, and also displayed 474.64 mAhg-1 at the relatively high current density of about 500 mAg-1 after 100 cycles. A low-cost Sn/SnO2/C nano-composite with significant electrochemical performance could be the next generation of high-performance negative electrodes for LIBs.

12.
ACS Appl Mater Interfaces ; 14(18): 21348-21355, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482578

RESUMEN

Vertical graphene nanowalls (VGNs) with excellent heat-transfer properties are promising to be applied in the thermal management of electronic devices. However, high growth temperature makes VGNs unable to be directly prepared on semiconductors and polymers, which limits the practical application of VGNs. In this work, the near room-temperature growth of VGNs was realized by utilizing the hot filament chemical vapor deposition method. Catalytic tantalum (Ta) filaments promote the decomposition of acetylene at ∼1600 °C. Density functional theory calculations proved that C2H* was the main active carbon cluster during VGN growth. The restricted diffusion of C2H* clusters induced the vertical growth of graphene nanoflakes on various substrates below 150 °C. The direct growth of VGNs successfully realized the excellent interfacial contact, and the thermal contact resistance could reach 3.39 × 10-9 m2·K·W-1. The temperature of electronic chips had a 6.7 °C reduction by utilizing directly prepared VGNs instead of thermal conductive tape as thermal-interface materials, indicating the great potential of VGNs to be directly prepared on electronic devices for thermal management.

13.
Adv Intell Syst ; 4(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35967598

RESUMEN

The field of magnetic robotics aims to obviate physical connections between the actuators and end-effectors. Such tetherless control may enable new ultra-minimally invasive surgical manipulations in clinical settings. While wireless actuation offers advantages in medical applications, the challenge of providing sufficient force to magnetic needles for tissue penetration remains a barrier to practical application. Applying sufficient force for tissue penetration is required for tasks such as biopsy, suturing, cutting, drug delivery, and accessing deep seated regions of complex structures in organs such as the eye. To expand the force landscape for such magnetic surgical tools, an impact-force based suture needle capable of penetrating in vitro and ex vivo samples with 3-DOF planar motion is proposed. Using custom-built 14G and 25G needles, we demonstrate generation of 410 mN penetration force, a 22.7-fold force increase with more than 20 times smaller volume compared to similar magnetically guided needles. With the MPACT-Needle, in vitro suturing of a gauze mesh onto an agar gel is demonstrated. In addition, we have reduced the tip size to 25G, which is a typical needle size for interventions in the eye, to demonstrate ex vivo penetration in a rabbit eye, mimicking procedures such as corneal injections and transscleral drug delivery.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38533465

RESUMEN

Surgical resection is the current clinical standard of care for treating squamous cell carcinoma. Maintaining an adequate tumor resection margin is the key to a good surgical outcome, but tumor edge delineation errors are inevitable with manual surgery due to difficulty in visualization and hand-eye coordination. Surgical automation is a growing field of robotics to relieve surgeon burdens and to achieve a consistent and potentially better surgical outcome. This paper reports a novel robotic supervised autonomous electrosurgery technique for soft tissue resection achieving millimeter accuracy. The tumor resection procedure is decomposed to the subtask level for a more direct understanding and automation. A 4-DOF suction system is developed, and integrated with a 6-DOF electrocautery robot to perform resection experiments. A novel near-infrared fluorescent marker is manually dispensed on cadaver samples to define a pseudotumor, and intraoperatively tracked using a dual-camera system. The autonomous dual-robot resection cooperation workflow is proposed and evaluated in this study. The integrated system achieves autonomous localization of the pseudotumor by tracking the near-infrared marker, and performs supervised autonomous resection in cadaver porcine tongues (N=3). The three pseudotumors were successfully removed from porcine samples. The evaluated average surface and depth resection errors are 1.19 and 1.83mm, respectively. This work is an essential step towards autonomous tumor resections.

15.
IEEE Trans Med Robot Bionics ; 3(3): 762-772, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36970042

RESUMEN

This paper presents a dual-arm suturing robot. We extend the Smart Tissue Autonomous Robot (STAR) with a second robot manipulator, whose purpose is to manage loose suture thread, a task that was previously executed by a human assistant. We also introduce novel near-infrared fluorescent (NIRF) sutures that are automatically segmented and delimit the boundaries of the suturing task. During ex-vivo experiments of porcine models, our results demonstrate that this new system is capable of outperforming human surgeons in all but one metric for the task of vaginal cuff closure (porcine model) and is more consistent in every aspect of the task. We also present results to demonstrate that the system can perform a vaginal cuff closure during an in-vivo experiment (porcine model).

16.
Med Image Comput Comput Assist Interv ; 11764: 320-328, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33511379

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common cancer in the head and neck region, and is associated with high morbidity and mortality rates. Surgical resection is usually the primary treatment strategy for OSCC, and maintaining effective tumor resection margins is paramount to surgical outcomes. In practice, wide tumor excisions impair post-surgical organ function, while narrow resection margins are associated with tumor recurrence. Identification and tracking of these resection margins remain a challenge because they migrate and shrink from preoperative chemo or radiation therapies, and deform intra-operatively. This paper reports a novel near-infrared (NIR) fluorescent marking and landmark-based deformable image registration (DIR) method to precisely predict deformed margins. The accuracy of DIR predicted resection margins on porcine cadaver tongues is compared with rigid image registration and surgeon's manual prediction. Furthermore, our tracking and registration technique is integrated into a robotic system, and tested using ex vivo porcine cadaver tongues to demonstrate the feasibility of supervised autonomous tumor bed resections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA