Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(18): 181001, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204893

RESUMEN

Dark photons can be the ultralight dark matter candidate, interacting with Standard Model particles via kinetic mixing. We propose to search for ultralight dark photon dark matter (DPDM) through the local absorption at different radio telescopes. The local DPDM can induce harmonic oscillations of electrons inside the antenna of radio telescopes. It leads to a monochromatic radio signal and can be recorded by telescope receivers. Using the observation data from the FAST telescope, the upper limit on the kinetic mixing can already reach 10^{-12} for DPDM oscillation frequencies at 1-1.5 GHz, which is stronger than the cosmic microwave background constraint by about one order of magnitude. Furthermore, large-scale interferometric arrays like LOFAR and SKA1 telescopes can achieve extraordinary sensitivities for direct DPDM search from 10 MHz to 10 GHz.

2.
Nat Commun ; 15(1): 915, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38291021

RESUMEN

Ultralight dark photons and axions are well-motivated hypothetical dark matter candidates. Both dark photon dark matter and axion dark matter can resonantly convert into electromagnetic waves in the solar corona when their mass is equal to the solar plasma frequency. The resultant electromagnetic waves appear as monochromatic signals within the radio-frequency range with an energy equal to the dark matter mass, which can be detected via radio telescopes for solar observations. Here we show our search for converted monochromatic signals in the observational data collected by the high-sensitivity Low Frequency Array (LOFAR) telescope and establish an upper limit on the kinetic mixing coupling between dark photon dark matter and photon, which can reach values as low as 10-13 within the frequency range of 30 - 80 MHz. This limit represents an improvement of approximately one order of magnitude better than the existing constraint from the cosmic microwave background observation. Additionally, we derive an upper limit on the axion-photon coupling within the same frequency range, which is better than the constraints from Light-Shining-through-a-Wall experiments while not exceeding the CERN Axion Solar Telescope (CAST) experiment or other astrophysical bounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA