Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 24(1): 18, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243204

RESUMEN

OBJECTIVE: To develop a Chinese Diabetes Mellitus Ontology (CDMO) and explore methods for constructing high-quality Chinese biomedical ontologies. MATERIALS AND METHODS: We used various data sources, including Chinese clinical practice guidelines, expert consensus, literature, and hospital information system database schema, to build the CDMO. We combined top-down and bottom-up strategies and integrated text mining and cross-lingual ontology mapping. The ontology was validated by clinical experts and ontology development tools, and its application was validated through clinical decision support and Chinese natural language medical question answering. RESULTS: The current CDMO consists of 3,752 classes, 182 fine-grained object properties with hierarchical relationships, 108 annotation properties, and over 12,000 mappings to other well-known medical ontologies in English. Based on the CDMO and clinical practice guidelines, we developed 200 rules for diabetes diagnosis, treatment, diet, and medication recommendations using the Semantic Web Rule Language. By injecting ontology knowledge, CDMO enhances the performance of the T5 model on a real-world Chinese medical question answering dataset related to diabetes. CONCLUSION: CDMO has fine-grained semantic relationships and extensive annotation information, providing a foundation for medical artificial intelligence applications in Chinese contexts, including the construction of medical knowledge graphs, clinical decision support systems, and automated medical question answering. Furthermore, the development process incorporated natural language processing and cross-lingual ontology mapping to improve the quality of the ontology and improved development efficiency. This workflow offers a methodological reference for the efficient development of other high-quality Chinese as well as non-English medical ontologies.


Asunto(s)
Ontologías Biológicas , Diabetes Mellitus , Humanos , Inteligencia Artificial , Lenguaje , Semántica , Diabetes Mellitus/diagnóstico
2.
Front Psychiatry ; 13: 861930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669265

RESUMEN

Mood disorders are ubiquitous mental disorders with familial aggregation. Extracting family history of psychiatric disorders from large electronic hospitalization records is helpful for further study of onset characteristics among patients with a mood disorder. This study uses an observational clinical data set of in-patients of Nanjing Brain Hospital, affiliated with Nanjing Medical University, from the past 10 years. This paper proposes a pretrained language model: Bidirectional Encoder Representations from Transformers (BERT)-Convolutional Neural Network (CNN). We first project the electronic hospitalization records into a low-dimensional dense matrix via the pretrained Chinese BERT model, then feed the dense matrix into the stacked CNN layer to capture high-level features of texts; finally, we use the fully connected layer to extract family history based on high-level features. The accuracy of our BERT-CNN model was 97.12 ± 0.37% in the real-world data set from Nanjing Brain Hospital. We further studied the correlation between mood disorders and family history of psychiatric disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA