Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(8): 1975-1993.e10, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39047731

RESUMEN

Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.


Asunto(s)
Cromatina , Elementos Transponibles de ADN , Análisis de la Célula Individual , Linfocitos T Reguladores , Animales , Cromatina/metabolismo , Cromatina/genética , Linfocitos T Reguladores/inmunología , Elementos Transponibles de ADN/genética , Ratones , Especificidad de Órganos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones Endogámicos C57BL , Humanos
2.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33789089

RESUMEN

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Asunto(s)
Cromatina/inmunología , Linfocitos T Reguladores/inmunología , Cicatrización de Heridas/inmunología , Adulto , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Diferenciación Celular/inmunología , Línea Celular , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/inmunología , Células HaCaT , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores CCR8/inmunología , Células T Auxiliares Foliculares/inmunología
3.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857395

RESUMEN

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Asunto(s)
Diferenciación Celular , Fagocitos , Humanos , Fagocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia/genética , Leucemia/patología , Leucemia/metabolismo , Ingeniería de Proteínas/métodos , Fagocitosis
4.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161919

RESUMEN

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Asunto(s)
Técnicas Biosensibles , Ingeniería Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Inflamación , Linfocitos T Reguladores , Animales , Antígenos CD28/metabolismo , Humanos , Inflamación/terapia , Ligandos , Receptor beta de Linfotoxina/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/trasplante , Factor de Necrosis Tumoral alfa
5.
Blood ; 138(2): 160-177, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831168

RESUMEN

Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.


Asunto(s)
Alelos , Proteínas Potenciadoras de Unión a CCAAT/genética , Epigénesis Genética , Factor de Transcripción GATA2/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Mutación/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Inducción de Remisión , Adulto Joven
6.
Int J Cancer ; 150(4): 617-625, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34591983

RESUMEN

A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.


Asunto(s)
Neoplasias Colorrectales/genética , Islas de CpG , Metilación de ADN , Inestabilidad de Microsatélites , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
7.
Scand J Immunol ; 95(5): e13146, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35073416

RESUMEN

1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analysed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg (iTreg) polarization conditions using TGF-ß. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-ß further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.


Asunto(s)
Calcifediol , Colecalciferol , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Calcifediol/metabolismo , Colecalciferol/farmacología , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fenotipo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta/metabolismo , Vitamina D/análogos & derivados
8.
Eur J Nutr ; 61(2): 885-899, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34636987

RESUMEN

PURPOSE: Adipokines may play an important role in the complex etiology of human obesity and its metabolic complications. Here, we analyzed the relationship between 15 adipokines, eating behavior and body-mass index (BMI). METHODS: The study included 557 participants of the Sorbs (62.1% women, 37.9% men) and 3101 participants of the population-based LIFE-Adult cohorts (53.4% women, 46.4% men) who completed the German version of the Three-Factor-Eating Questionnaire to assess the eating behavior types cognitive restraint, disinhibition and hunger. Serum levels of 15 adipokines, including adiponectin, adipocyte fatty acid-binding protein (AFABP), angiopoietin-related growth factor (AGF), chemerin, fibroblast growth factor (FGF)-19, FGF-21, FGF-23, insulin-like growth factor (IGF)-1, interleukin (IL) 10, irisin, progranulin, vaspin, pro-neurotensin (pro-NT), pro-enkephalin (PENK) and leptin were measured. Based on significant correlations between several adipokines with different eating behavior items and BMI, we conducted mediation analyses, considering the eating behavior items as potential mediation variable towards BMI. RESULTS: Here, we found that the positive association between chemerin, AFABP or leptin and BMI in Sorbian women was mediated by higher restraint or disinhibited eating, respectively. Additionally, in Sorbian women, the negative relation between IGF-1 and BMI was mediated by higher disinhibition and the positive link between AGF and BMI by lower disinhibition. In Sorbian men, the negative relationship between PENK and BMI was mediated by lower disinhibition and hunger, whereas the negative relation between IGF-1 and BMI was mediated by higher hunger. In the LIFE-Adult women´s cohort, associations between chemerin and BMI were mediated by decreased hunger or disinhibition, respectively, whereas relations between PENK and BMI were fully mediated by decreased disinhibition. CONCLUSION: Our study suggests that adipokines such as PENK, IGF-1, chemerin, AGF, AFABP and leptin might affect the development of obesity by directly modifying individual eating behavior. Given the observational nature of the study, future experimental or mechanistic work is warranted.


Asunto(s)
Tejido Adiposo , Obesidad , Adulto , Índice de Masa Corporal , Conducta Alimentaria/psicología , Femenino , Humanos , Hambre , Masculino
9.
Lupus ; 30(11): 1773-1780, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34284675

RESUMEN

OBJECTIVE: Hypomethylation of CD40-ligand (CD40L) in T-cells is associated with increased disease activity in systemic lupus erythematosus (SLE). We therefore investigated possible associations of dietary methyl donors and products with CD40L methylation status in SLE. METHODS: Food frequency questionnaires were employed to calculate methyl donor micronutrients in 61 female SLE patients (age 45.7 ± 12.0 years, disease duration 16.2 ± 8.4 years) and compared to methylation levels of previously identified key DNA methylation sites (CpG17 and CpG22) within CD40L promotor of T-cells using quantitative DNA methylation analysis on the EpiTYPER mass spectrometry platform. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Linear regression modelling was used. P values were adjusted according to Benjamini & Hochberg. RESULTS: Amongst the micronutrients assessed (g per day), methionine and cysteine were associated with methylation of CpG17 (ß = 5.0 (95%CI: 0.6-9.4), p = 0.04; and ß = 2.4 (0.6-4.1), p = 0.02, respectively). Methionine, choline, and cysteine were additionally associated with the mean methylation of the entire CD40L (ß = 9.5 (1.0-18.0), p = 0.04; ß = 1.6 (0.4-3.0), p = 0.04; and ß = 4.3 (0.9-7.7), p = 0.02, respectively). Associations of the SLEDAI with hypomethylation were confirmed for CpG17 (ß=-32.6 (-60.6 to -4.6), p = 0.04) and CpG22 (ß=-38.3 (-61.2 to -15.4), p = 0.004), but not the mean methylation of CD40L. Dietary products with the highest impact on methylation included meat, ice cream, white bread, and cooked potatoes. CONCLUSIONS: Dietary methyl donors may influence DNA methylation levels and thereby disease activity in SLE.


Asunto(s)
Ligando de CD40 , Lupus Eritematoso Sistémico , Metilación , Micronutrientes , Adulto , Ligando de CD40/genética , Ligando de CD40/metabolismo , Colina/metabolismo , Estudios Transversales , Cisteína/metabolismo , Metilación de ADN/fisiología , Registros de Dieta , Femenino , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Metionina/metabolismo , Micronutrientes/metabolismo , Persona de Mediana Edad , Gravedad del Paciente
10.
Lupus ; 30(1): 45-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33081589

RESUMEN

OBJECTIVE: To comprehensively assess associations of site-specific CD4+-T-cell hypomethylation of the CD40-Ligand gene (CD40L) with disease activity of women with systemic lupus erythematosus (SLE). METHODS: CpG-sites within the DNA of the promotor and two enhancer regions (n = 22) of CD40L were identified and numbered consecutively. The rate of methylated DNA in isolated CD4+-T-cells of women with SLE were quantified for each methylation site by MALDI-TOF. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Associations of site-specific methylation rates with the SLEDAI scores were assessed by linear regression modelling. P values were adjusted according to Bonferroni-Holm as indicated. RESULTS: 60 female SLE patients participated in the study (age 45.7 ± 11.1 years, disease duration 17.0 ± 8.3 years). Significant associations to the SLEDAI were noted for CpG22 hypomethylation of the promotor (ß = -40.1, p = 0.017, adjusted p = 0.027), trends were noted for CpG17 hypomethylation of the promotor (ß = -30.5, p = 0.032, adjusted p = 0.6), and for CpG11 hypermethylation of the second enhancer (ß = 15.0, p = 0.046, adjusted p = 0.8). CONCLUSION: Site-specific hypomethylation of the CD40L promotor in CD4+-T-cells show associations with disease activity in female SLE patients.


Asunto(s)
Ligando de CD40/genética , Metilación de ADN , Lupus Eritematoso Sistémico/genética , Regiones Promotoras Genéticas/genética , Adulto , Linfocitos T CD4-Positivos/metabolismo , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Lupus Eritematoso Sistémico/diagnóstico , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Transactivadores/genética
11.
Blood ; 132(25): 2643-2655, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30315124

RESUMEN

Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.


Asunto(s)
Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Proteínas Proto-Oncogénicas , Transactivadores , Transcripción Genética , Cromatina/genética , Cromatina/metabolismo , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
12.
Nature ; 507(7493): 455-461, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24670763

RESUMEN

Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.


Asunto(s)
Atlas como Asunto , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Anotación de Secuencia Molecular , Especificidad de Órganos , Línea Celular , Células Cultivadas , Análisis por Conglomerados , Predisposición Genética a la Enfermedad/genética , Células HeLa , Humanos , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética
13.
Blood ; 127(24): 2991-3003, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-26966090

RESUMEN

Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Elementos de Facilitación Genéticos , Células Mieloides/fisiología , Mielopoyesis/genética , Neutrófilos/fisiología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Células K562 , Ratones , Ratones Noqueados , Células U937
14.
Nat Commun ; 15(1): 3224, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622133

RESUMEN

The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.


Asunto(s)
Enfermedad Injerto contra Huésped , Linfocitos T Reguladores , Ratones , Animales , Linfocitos T Reguladores/trasplante , Trasplante Homólogo , Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped/prevención & control , Ratones Endogámicos C57BL
15.
Nat Commun ; 15(1): 5693, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972954

RESUMEN

Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Redes Reguladoras de Genes , Humanos , Metilación de ADN/genética , Islas de CpG/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Regulación Leucémica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Cromatina/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Femenino , Hematopoyesis/genética , Niño , Transcriptoma , Proteínas Proto-Oncogénicas , Transactivadores
16.
Cell Rep ; 43(8): 114498, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39084219

RESUMEN

Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Cohesinas , Leucemia Mieloide Aguda , Mutación , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Mutación/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Regulación Leucémica de la Expresión Génica , Antígenos Nucleares/metabolismo , Antígenos Nucleares/genética , Proteínas Nucleares
17.
Signal Transduct Target Ther ; 9(1): 199, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117617

RESUMEN

High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T CD8-positivos , Proteínas con Dominio LIM , Factor de Transcripción STAT3 , Transducción de Señal , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/inmunología , Linfocitos T CD8-positivos/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Humanos , Transducción de Señal/inmunología , Transducción de Señal/genética , Interleucinas/genética , Interleucinas/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología
18.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226976

RESUMEN

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Humanos , Receptores ErbB , Tejido Adiposo , Ciclo Celular
19.
Nat Commun ; 13(1): 4301, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879286

RESUMEN

Cohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs.


Asunto(s)
Cromatina , Monocitos , Animales , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Mamíferos/genética , Monocitos/metabolismo , Cohesinas
20.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606086

RESUMEN

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Apoptosis , Humanos , FN-kappa B/metabolismo , Fosforilación , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA