Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38050126

RESUMEN

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Asunto(s)
Microtúbulos , Neuronas , Animales , Ratones , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neuronas/fisiología , Neurogénesis , Plasticidad Neuronal
2.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123091

RESUMEN

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Proteínas de la Membrana , Ratones Noqueados , Plasticidad Neuronal , Vesículas Sinápticas , Animales , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidad Neuronal/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Vesículas Sinápticas/metabolismo , Ratones Endogámicos C57BL , Sinapsis/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Hipocampo/metabolismo , Exocitosis/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
3.
EMBO Rep ; 23(8): e54361, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35735260

RESUMEN

The striatum is a subcortical brain region responsible for the initiation and termination of voluntary movements. Striatal spiny projection neurons receive major excitatory synaptic input from neocortex and thalamus, and cyclic nucleotides have long been known to play important roles in striatal function. Yet, the precise mechanism of action is unclear. Here, we combine optogenetic stimulation, 2-photon imaging, and genetically encoded scavengers to dissect the regulation of striatal synapses in mice. Our data show that excitatory striatal inputs are tonically depressed by phosphodiesterases (PDEs), in particular PDE1. Blocking PDE activity boosts presynaptic calcium entry and glutamate release, leading to strongly increased synaptic transmission. Although PDE1 degrades both cAMP and cGMP, we uncover that the concentration of cGMP, not cAMP, controls the gain of striatal inputs. Disturbing this gain control mechanism in vivo impairs motor skill learning in mice. The tight dependence of striatal excitatory synapses on PDE1 and cGMP offers a new perspective on the molecular mechanisms regulating striatal activity.


Asunto(s)
Cuerpo Estriado , Sinapsis , Animales , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Ratones , Neuronas/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Tálamo/metabolismo
4.
Cell ; 136(6): 1161-71, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303856

RESUMEN

The synaptic serine protease neurotrypsin is essential for cognitive function, as its deficiency in humans results in severe mental retardation. Recently, we demonstrated the activity-dependent release of neurotrypsin from presynaptic terminals and proteolytical cleavage of agrin at the synapse. Here we show that the activity-dependent formation of dendritic filopodia is abolished in hippocampal neurons from neurotrypsin-deficient mice. Administration of the neurotrypsin-dependent 22 kDa fragment of agrin rescues the filopodial response. Detailed analyses indicated that presynaptic action potential firing is necessary for the release of neurotrypsin, whereas postsynaptic NMDA receptor activation is necessary for the neurotrypsin-dependent cleavage of agrin. This contingency characterizes the neurotrypsin-agrin system as a coincidence detector of pre- and postsynaptic activation. As the resulting dendritic filopodia are thought to represent precursors of synapses, the neurotrypsin-dependent cleavage of agrin at the synapse may be instrumental for a Hebbian organization and remodeling of synaptic circuits in the CNS.


Asunto(s)
Agrina/metabolismo , Dendritas/metabolismo , Hipocampo/citología , Terminales Presinápticos , Seudópodos/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Exocitosis , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Mutagénesis , Serina Endopeptidasas/genética
5.
Cereb Cortex ; 33(1): 23-34, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203089

RESUMEN

Spike-timing-dependent plasticity (STDP) is a candidate mechanism for information storage in the brain, but the whole-cell recordings required for the experimental induction of STDP are typically limited to 1 h. This mismatch of time scales is a long-standing weakness in synaptic theories of memory. Here we use spectrally separated optogenetic stimulation to fire precisely timed action potentials (spikes) in CA3 and CA1 pyramidal cells. Twenty minutes after optogenetic induction of STDP (oSTDP), we observed timing-dependent depression (tLTD) and timing-dependent potentiation (tLTP), depending on the sequence of spiking. As oSTDP does not require electrodes, we could also assess the strength of these paired connections three days later. At this late time point, late tLTP was observed for both causal (CA3 before CA1) and anticausal (CA1 before CA3) timing, but not for asynchronous activity patterns (Δt = 50 ms). Blocking activity after induction of oSTDP prevented stable potentiation. Our results confirm that neurons wire together if they fire together, but suggest that synaptic depression after anticausal activation (tLTD) is a transient phenomenon.


Asunto(s)
Potenciación a Largo Plazo , Neuronas , Potenciación a Largo Plazo/fisiología , Potenciales de Acción/fisiología , Técnicas de Placa-Clamp , Neuronas/fisiología , Recompensa , Plasticidad Neuronal/fisiología
6.
BMC Biol ; 19(1): 227, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663304

RESUMEN

BACKGROUND: Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS: Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS: PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.


Asunto(s)
AMP Cíclico , Optogenética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Drosophila/metabolismo , Luz , Transducción de Señal
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769223

RESUMEN

Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for static images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to time-dependent image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.


Asunto(s)
Algoritmos , Señalización del Calcio , Calcio/metabolismo , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Humanos , Células Jurkat , Microscopía Fluorescente , Relación Señal-Ruido
8.
J Neurosci ; 37(6): 1532-1545, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28028198

RESUMEN

The basolateral amygdala (BLA) integrates sensory input from cortical and subcortical regions, a function that requires marked synaptic plasticity. Here we provide evidence that cytochrome P450 aromatase (AROM), the enzyme converting testosterone to 17ß-estradiol (E2), contributes to the regulation of this plasticity in a sex-specific manner. We show that AROM is expressed in the BLA, particularly in the basolateral nucleus (BL), in male and female rodents. Systemic administration of the AROM inhibitor letrozole reduced spine synapse density in the BL of adult female mice but not in the BL of male mice. Similarly, in organotypic corticoamygdalar slice cultures from immature rats, treatment with letrozole significantly reduced spine synapses in the BL only in cultures derived from females. In addition, letrozole sex-specifically altered synaptic properties in the BL: in acute slices from juvenile (prepubertal) female rats, wash-in of letrozole virtually abolished long-term potentiation (LTP), whereas it did not prevent the generation of LTP in the slices from males. Together, these data indicate that neuron-derived E2 modulates synaptic plasticity in rodent BLA sex-dependently. As protein expression levels of AROM, estrogen and androgen receptors did not differ between males and females and were not sex-specifically altered by letrozole, the findings suggest sex-specific mechanisms of E2 signaling.SIGNIFICANCE STATEMENT The basolateral amygdala (BLA) is a key structure of the fear circuit. This research reveals a sexually dimorphic regulation of synaptic plasticity in the BLA involving neuronal aromatase, which produces the neurosteroid 17ß-estradiol (E2). As male and female neurons in rodent BLA responded differently to aromatase inhibition both in vivo and in vitro, our findings suggest that E2 signaling in BLA neurons is regulated sex-dependently, presumably via mechanisms that have been established during sexual determination. These findings could be relevant for the understanding of sex differences in mood disorders and of the side effects of cytochrome P450 aromatase inhibitors, which are frequently used for breast cancer therapy.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/fisiología , Complejo Nuclear Basolateral/fisiología , Plasticidad Neuronal/fisiología , Caracteres Sexuales , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Letrozol , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Nitrilos/farmacología , Técnicas de Cultivo de Órganos , Ratas , Triazoles/farmacología
10.
J Biol Chem ; 289(16): 10975-10987, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24596089

RESUMEN

The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7's extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7's Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Conducta Animal , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/patología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Ansiedad/patología , Células CHO , Cricetinae , Cricetulus , Células L , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Ratones , Ratones Mutantes , Estructura Terciaria de Proteína , Receptores de Glutamato Metabotrópico/genética , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/genética , Estrés Psicológico/patología
14.
Front Immunol ; 14: 1273837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077336

RESUMEN

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Astrocitos/metabolismo , Bulbo Olfatorio/metabolismo , AMP Cíclico/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P1/metabolismo
15.
Cell Rep ; 42(7): 112743, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37418322

RESUMEN

Homeostatic synaptic plasticity adjusts the strength of synapses to restrain neuronal activity within a physiological range. Postsynaptic guanylate kinase-associated protein (GKAP) controls the bidirectional synaptic scaling of AMPA receptors (AMPARs); however, mechanisms by which chronic activity triggers cytoskeletal remodeling to downscale synaptic transmission are barely understood. Here, we report that the microtubule-dependent kinesin motor Kif21b binds GKAP and likewise is located in dendritic spines in a myosin Va- and neuronal-activity-dependent manner. Kif21b depletion unexpectedly alters actin dynamics in spines, and adaptation of actin turnover following chronic activity is lost in Kif21b-knockout neurons. Consistent with a role of the kinesin in regulating actin dynamics, Kif21b overexpression promotes actin polymerization. Moreover, Kif21b controls GKAP removal from spines and the decrease of GluA2-containing AMPARs from the neuronal surface, thereby inducing homeostatic synaptic downscaling. Our data highlight a critical role of Kif21b at the synaptic actin cytoskeleton underlying homeostatic scaling of neuronal firing.


Asunto(s)
Actinas , Cinesinas , Actinas/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Miosinas/metabolismo , Espinas Dendríticas/metabolismo
16.
Sci Rep ; 12(1): 6000, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397639

RESUMEN

The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Canales Catiónicos TRPM , Animales , Calcio/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Potenciales Postsinápticos Excitadores , Gliburida/metabolismo , Gliburida/farmacología , Hipocampo/metabolismo , Ratones , Transmisión Sináptica/fisiología , Canales Catiónicos TRPM/metabolismo
17.
Nat Commun ; 13(1): 6376, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289226

RESUMEN

Mice display signs of fear when neurons that express cFos during fear conditioning are artificially reactivated. This finding gave rise to the notion that cFos marks neurons that encode specific memories. Here we show that cFos expression patterns in the mouse dentate gyrus (DG) change dramatically from day to day in a water maze spatial learning paradigm, regardless of training level. Optogenetic inhibition of neurons that expressed cFos on the first training day affected performance days later, suggesting that these neurons continue to be important for spatial memory recall. The mechanism preventing repeated cFos expression in DG granule cells involves accumulation of ΔFosB, a long-lived splice variant of FosB. CA1 neurons, in contrast, repeatedly expressed cFos. Thus, cFos-expressing granule cells may encode new features being added to the internal representation during the last training session. This form of timestamping is thought to be required for the formation of episodic memories.


Asunto(s)
Giro Dentado , Aprendizaje Espacial , Animales , Ratones , Giro Dentado/fisiología , Hipocampo , Neuronas/metabolismo , Memoria Espacial
18.
Trends Neurosci ; 44(4): 246-247, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33674136

RESUMEN

A recent article by Shibata et al. introduces the engineered photoactivatable enzyme paCaMKII. Activation of this new tool is sufficient to induce long-term potentiation (LTP) of hippocampal synapses in slice culture and in intact animals, thereby expanding the existing toolkit for light-induced modification of brain connectivity at the synaptic level.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Sinapsis , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Sinapsis/metabolismo
19.
Front Cell Neurosci ; 15: 690147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177468

RESUMEN

Ca2+ imaging is the most frequently used technique to study glial cell physiology. While chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs) have become state of the art in recent years. Great improvements have been made since the development of the first GECI and a large number of GECIs with different physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This review discusses some of the most frequently used GECIs and their suitability for glial cell research.

20.
Cells ; 9(2)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31972963

RESUMEN

In the brain, Hebbian-type and homeostatic forms of plasticity are affected by neuromodulators like dopamine (DA). Modifications of the perisynaptic extracellular matrix (ECM), which control the functions and mobility of synaptic receptors as well as the diffusion of transmitters and neuromodulators in the extracellular space, are crucial for the manifestation of plasticity. Mechanistic links between synaptic activation and ECM modifications are largely unknown. Here, we report that neuromodulation via D1-type DA receptors can induce targeted ECM proteolysis specifically at excitatory synapses of rat cortical neurons via proteases ADAMTS-4 and -5. We showed that receptor activation induces increased proteolysis of brevican (BC) and aggrecan, two major constituents of the adult ECM both in vivo and in vitro. ADAMTS immunoreactivity was detected near synapses, and shRNA-mediated knockdown reduced BC cleavage. We have outlined a molecular scenario of how synaptic activity and neuromodulation are linked to ECM rearrangements via increased cAMP levels, NMDA receptor activation, and intracellular calcium signaling.


Asunto(s)
Matriz Extracelular/metabolismo , Terminales Presinápticos/metabolismo , Receptores Dopaminérgicos/metabolismo , Sinapsis/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Brevicano/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Furina/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Activación del Canal Iónico , Masculino , Corteza Prefrontal/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA