Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neuroimage ; 256: 119277, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35523369

RESUMEN

Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.


Asunto(s)
Sustancia Gris , Sustancia Blanca , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Humanos , Neuritas , Ratas , Agua , Sustancia Blanca/diagnóstico por imagen
2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555129

RESUMEN

The blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate molecules from blood circulation to the brain. Focused ultrasound (FUS) with microbubbles can create a local and reversible detachment of the TJs. However, very little is known about the effect of FUS on the expression of efflux transporters. We investigated the in vivo effects of moderate acoustic pressures on both P-gp and BCRP expression for up to two weeks after sonication. Magnetic resonance-guided FUS was applied in the striatum of 12 rats. P-gp and BCRP expression were determined by immunohistochemistry at 1, 3, 7, and 14 days postFUS. Our results indicate that FUS-induced BBB opening is capable of (i) decreasing P-gp expression up to 3 days after sonication in both the treated and in the contralateral brain regions and is capable of (ii) overexpressing BCRP up to 7 days after FUS in the sonicated regions only. Our findings may help improve FUS-aided drug delivery strategies by considering both the mechanical effect on the TJs and the regulation of P-gp and BCRP.


Asunto(s)
Barrera Hematoencefálica , Neoplasias , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proyectos Piloto , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Células Endoteliales/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Encéfalo/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Microburbujas
3.
NMR Biomed ; 27(3): 280-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24403001

RESUMEN

There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels. A three-dimensional diffusion prepared fast imaging with steady-state free precession sequence for MR microscopy was implemented on a 17.2 T imaging system and used to investigate the effect of two biological challenges known to cause cell swelling, exposure to a hypotonic solution or to ouabain, on Aplysia nervous tissue. The ADC was measured inside isolated neuronal soma and in the region of cell bodies of the buccal ganglia. Both challenges resulted in an ADC increase inside isolated neuronal soma (+31 ± 24% and +30 ± 11%, respectively) and an ADC decrease at tissue level in the buccal ganglia (-12 ± 5% and -18 ± 8%, respectively). A scenario involving a layer of water molecules bound to the inflating cell membrane surface is proposed to reconcile this apparent discrepancy.


Asunto(s)
Aplysia/citología , Aplysia/fisiología , Especificidad de Órganos/efectos de los fármacos , Presión Osmótica , Ouabaína/farmacología , Agua/química , Animales , Aplysia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Difusión , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/fisiología , Holografía , Imagen por Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
4.
Angiogenesis ; 16(1): 171-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23053783

RESUMEN

Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of (19)F MRI was investigated to detect angiogenesis with α(ν)ß(3)-targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and (19)F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α(ν)ß(3) integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of (19)F MRI to detect α(ν)ß(3)-integrin endothelial expression in brain tumors in vivo.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/diagnóstico , Flúor , Fluorocarburos , Imagen por Resonancia Magnética , Imagen Molecular , Nanopartículas , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fluorocarburos/administración & dosificación , Humanos , Hidrocarburos Bromados , Inyecciones , Ratones , Microscopía Fluorescente , Neovascularización Patológica , Oligopéptidos , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Magn Reson Med ; 69(1): 179-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22378016

RESUMEN

LipoCEST are liposome-encapsulating paramagnetic contrast agents (CA) based on chemical exchange saturation transfer with applications in biomolecular MRI. Their attractive features include biocompatibility, subnanomolar sensitivity, and amenability to functionalization for targeting biomarkers. We demonstrate MR imaging using a targeted lipoCEST, injected intravenously. A lipoCEST carrying Tm(III)-complexes was conjugated to RGD tripeptide (RGD-lipoCEST), to target integrin α(ν)ß(3) receptors involved in tumor angiogenesis and was compared with an unconjugated lipoCEST. Brain tumors were induced in athymic nude mice by intracerebral injection of U87MG cells and were imaged at 7 T after intravenous injection of either of the two contrast agents (n = 12 for each group). Chemical exchange saturation transfer-MSME sequence was applied over 2 h with an average acquisition time interval of 13.5 min. The chemical exchange saturation transfer signal was ∼1% in the tumor and controlateral regions, and decreased to ∼0.3% after 2 h; while RGD-lipoCEST signal was ∼1.4% in the tumor region and persisted for up to 2 h. Immunohistochemical staining revealed a persistent colocalization of RGD-lipoCEST with α(ν)ß(3) receptors in the tumor region. These results constitute an encouraging step toward in vivo MRI imaging of tumor angiogenesis using intravenously injected lipoCEST.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Medios de Contraste , Liposomas , Imagen por Resonancia Magnética/métodos , Neovascularización Patológica/diagnóstico , Animales , Línea Celular Tumoral , Nanopartículas de Magnetita , Ratones , Ratones Desnudos , Trasplante de Neoplasias
6.
NMR Biomed ; 26(6): 699-708, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23335424

RESUMEN

Measurements of tumor microvasculature are important to obtain an understanding of tumor angiogenesis and for the evaluation of therapies. In this work, we characterize the evolution of the microvascular flux at different stages of tumor growth in the 9L rat brain tumor model. The absolute quantification of cerebral blood flux is achieved with MRI at 7 T using the flow enhanced signal intensity (FENSI) method. FENSI flux maps were obtained between 5 and 14 days after glioma cell inoculation. Based on cerebral blood flux maps, we highlighted two main stages of tumor growth, below and above 3 mm, presenting distinct flux patterns and vascular properties. No significant difference emerged from the group analysis performed on the data collected at an early developmental stage (tumor size < 3 mm) when compared with healthy tissue. At a late developmental stage (tumor size > 3 mm), we observed a significant decrease in the cerebral blood flux inside the gliosarcoma (-33%, p < 0.01) and compartmentalization of the tumor (p < 0.05). FENSI flux maps delineated a low-flux tumor core (58 ± 17 µL/min/cm(2) ) and higher vascularized regions around the tumor periphery (85 ± 21 µL/min/cm(2) ). Histology was performed on 11 animals to finely probe the intratumor heterogeneity and microvessel density, and the results were compared with the information derived from FENSI flux maps. The hyper- and hypoperfused tumor regions revealed with FENSI at the late tumor developmental stage correlated well with the ratios of high and low blood vessel density (R(2) = 0.41) and fractional vascular surface (R(2) = 0.67) observed with fluorescence microscopy [cluster of differentiation 31 (CD31) staining].


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Circulación Cerebrovascular , Gliosarcoma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Animales , Neoplasias Encefálicas/patología , Gliosarcoma/patología , Inmunohistoquímica , Masculino , Estadificación de Neoplasias , Ratas , Ratas Endogámicas F344
7.
Magn Reson Med ; 68(6): 1705-12, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22302673

RESUMEN

Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/análisis , Imagen de Difusión por Resonancia Magnética/métodos , Glioblastoma/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Proteínas Musculares/análisis , Músculo Esquelético/metabolismo , Animales , Línea Celular Tumoral , Pollos , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Oncotarget ; 8(32): 52543-52559, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881750

RESUMEN

Diffuse Instrinsic Pontine Glioma is the most aggressive form of High Grade Gliomas in children. The lack of biological material and the absence of relevant models have hampered the development of new therapeutics. Their extensive infiltration of the brainstem renders any surgical resection impossible and until recently biopsies were considered not informative enough and therefore not recommended. Thus, most models were derived from autopsy material. We aimed to develop relevant in vivo DIPG models that mimic this specific disease and its molecular diversity from tumor material obtained at diagnosis. Eight patient-derived orthotopic xenograft models were obtained after direct stereotactic injection of a mixed cell suspension containing tumor cells and stromal cells in the brainstem or thalamus of nude mice and serially passaged thereafter. In parallel, we developed 6 cell-derived xenograft models after orthotopic injection of tumor-initiating cells cultured from stereotactic biopsies. Cells were modified to express luciferase to enable longitudinal tumor growth monitoring, and fluorescent reporter proteins to trace the tumor cells in the brain. These models do not form a tumor mass, they are invasive, show the H3K27 trimethylation loss in vivo and the tumor type diversity observed in patients in terms of histone H3 mutations and lineage markers. Histological and MRI features at 11.7 Tesla show similarities with treatment naïve human DIPG, and in this respect, both direct and indirect orthotopic xenograft looked alike. These DIPG models will therefore constitute valuable tools for evaluating new therapeutic approaches in this devastating disease.

9.
ACS Chem Biol ; 11(10): 2812-2819, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27513597

RESUMEN

Gliomas are the most common primary brain tumor in humans. To date, the only treatment of care consists of surgical removal of the tumor bulk, irradiation, and chemotherapy, finally resulting in a very poor prognosis due to the lack of efficiency in diagnostics. In this context, nanomedicine combining both diagnostic and magnetic resonance imaging (MRI) and therapeutic applications is a relevant strategy referred to theranostic. Magnetic nanoparticles (NP) are excellent MRI contrast agents because of their large magnetic moment, which induces high transverse relaxivity (r2) characteristic and increased susceptibility effect (T2*). NP can be also used for drug delivery by coating their surface with therapeutic molecules. Preliminary in vitro studies show the high potential of caffeic acid (CA), a natural polyphenol, as a promising anticancer drug due to its antioxidant, anti-inflammatory, and antimetastatic properties. In this study, the antioxidative properties of iron oxide NP functionalized with caffeic acid (γFe2O3@CA NP) are investigated in vitro on U87-MG brain cancer cell lines. After intravenous injection of these NP in mice bearing a U87 glioblastoma, a negative contrast enhancement was specifically observed on 11.7 T MRI images in cancerous tissue, demonstrating a passive targeting of the tumor with these nanoplatforms.


Asunto(s)
Antioxidantes/farmacología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Compuestos Férricos/administración & dosificación , Nanopartículas del Metal , Especies Reactivas de Oxígeno/metabolismo , Nanomedicina Teranóstica , Línea Celular Tumoral , Humanos , Imagen por Resonancia Magnética , Microscopía Electrónica de Transmisión
10.
Adv Healthc Mater ; 4(7): 1076-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25676134

RESUMEN

The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T2-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water-dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r2 four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T2(*) -weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 µmoliron kg(-1)), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy-to-produce biocompatible contrast agents derived from bacterial magnetosomes.


Asunto(s)
Encéfalo/patología , Óxido Ferrosoférrico/química , Magnetosomas/química , Nanoestructuras/química , Animales , Medios de Contraste/química , Dextranos/química , Imagen por Resonancia Magnética/métodos , Magnetismo/métodos , Nanopartículas de Magnetita/química , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Ratones , Imagen Molecular/métodos , Nanopartículas/química
11.
PLoS One ; 9(2): e89225, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586610

RESUMEN

Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC) considered so far as the "gold standard". The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF), the stretched exponential model (SEM), and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes.


Asunto(s)
Encéfalo/patología , Imagen de Difusión por Resonancia Magnética , Modelos Estadísticos , Accidente Cerebrovascular/diagnóstico , Algoritmos , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas
12.
Invest Radiol ; 49(7): 485-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24619211

RESUMEN

PURPOSE: Our aim was to investigate the pertinence of diffusion and perfusion magnetic resonance imaging (MRI) parameters obtained at 17.2 T in a 9L glioma rat brain tumor model to evaluate tumor tissue characteristics. MATERIALS AND METHODS: The local animal ethics advisory committee approved this study. 9L glioma cells were injected intracerebrally to 14 Fischer rats. The animals were imaged at 7 or 12 days after implantation on a 17.2-T MRI scanner, using 72 different b values (2-3025 s/mm(2)). The signal attenuation, S/So, was fitted using a kurtosis diffusion model (ADCo and K) and a biexponential diffusion model (fractions ffast and fslow and diffusion coefficients Dfast and Dslow) using b values greater than 300 s/mm(2). To bridge the 2 models, an average diffusion coefficient and a biexponential index were estimated from the biexponential model as ADCo and K equivalents, respectively. Intravoxel incoherent motion perfusion-related parameters were obtained from the residual signal at low b values, after the diffusion component has been removed. Diffusion and perfusion maps were generated for each fitted parameter on a pixel-by-pixel basis, and regions of interest were drawn in the tumor and contralateral side to retrieve diffusion and perfusion parameters. All rats were killed and cellularity and vascularity were quantitatively assessed using histology for comparison with diffusion and perfusion parameters. RESULTS: Intravoxel incoherent motion maps clearly highlighted tumor areas as generally heterogeneous, as confirmed by histology. For diffusion parameters, ADCo and were not significantly different between the tumor and contralateral side, whereas K in the tumor was significantly higher than in contralateral basal ganglia (P < 0.0001), as well as biexponential index (P < 0.001). ADCo and in the tumor at day 7 were significantly higher than at day 12 (P < 0.01 and P < 0.001, respectively). fIVIM in the tumor from the kurtosis diffusion model was significantly higher than in contralateral basal ganglia (P < 0.001). fIVIM in the tumor at day 7 was significantly higher than in the tumor at day 12 (P < 0.0001). There was no significant difference for D* between the tumor and contralateral side (P = 0.06). A significant negative correlation was found between tumor vascularity and fIVIM (P < 0.05) as well as between tumor cell count and (P < 0.01). CONCLUSION: Quantitative non-Gaussian diffusion and perfusion MRI can provide valuable information on microvasculature and tissue structure to improve characterization of brain tumors.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Glioma/irrigación sanguínea , Glioma/patología , Angiografía por Resonancia Magnética/métodos , Microcirculación , Neovascularización Patológica/patología , Animales , Velocidad del Flujo Sanguíneo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Movimiento (Física) , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA