Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Appl Opt ; 62(17): F14-F20, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707126

RESUMEN

The next generation of tunable photonics requires highly conductive and light inert interconnects that enable fast switching of phase, amplitude, and polarization modulators without reducing their efficiency. As such, metallic electrodes should be avoided, as they introduce significant parasitic losses. Transparent conductive oxides, on the other hand, offer reduced absorption due to their high bandgap and good conductivity due to their relatively high carrier concentration. Here, we present a metamaterial that enables electrodes to be in contact with the light active part of optoelectronic devices without the accompanying metallic losses and scattering. To this end, we use transparent conductive oxides and refractive index matched dielectrics as the metamaterial constituents. We present the metamaterial construction together with various characterization techniques that confirm the desired optical and electrical properties.

2.
Appl Opt ; 62(17): F21-F30, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707127

RESUMEN

Image sensors are must-have components of most consumer electronics devices. They enable portable camera systems, which find their way into billions of devices annually. Such high volumes are possible thanks to the complementary metal-oxide semiconductor (CMOS) platform, leveraging wafer-scale manufacturing. Silicon photodiodes, at the core of CMOS image sensors, are perfectly suited to replicate human vision. Thin-film absorbers are an alternative family of photoactive materials, distinguished by the layer thickness comparable with or smaller than the wavelength of interest. They allow design of imagers with functionalities beyond Si-based sensors, such as transparency or detectivity at wavelengths above Si cutoff (e.g., short-wave infrared). Thin-film image sensors are an emerging device category. While intensive research is ongoing to achieve sufficient performance of thin-film photodetectors, to our best knowledge, there have been few complete studies on their integration into advanced systems. In this paper, we will describe several types of image sensors being developed at imec, based on organic, quantum dot, and perovskite photodiode and show their figures of merit. We also discuss the methodology for selecting the most appropriate sensor architecture (integration with thin-film transistor or CMOS). Application examples based on imec proof-of-concept sensors are demonstrated to showcase emerging use cases.

3.
Adv Mater ; 36(40): e2314193, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39177182

RESUMEN

Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.

4.
ACS Appl Mater Interfaces ; 16(36): 47889-47901, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190699

RESUMEN

All-inorganic cesium lead halide perovskites possess excellent thermal stability, a feature that renders them highly favorable for optoelectronic applications with an elevated thermal budget. Employing a coevaporation approach for their deposition holds promise for manufacturing at an industrial level, owing to improvements in device scalability and reproducibility. For unlocking the full potential of vacuum-evaporated perovskite thin films, it is crucial to delve deeper into their crystallization process, which, as a solid-state reaction, has been less investigated compared to the crystallization process of, most commonly used, solution-based methods. In this work, we employ spectroscopic ellipsometry, a nondestructive, high speed, and high accuracy characterization method, to study the real time annealing effect on thermally coevaporated CsPbI2Br thin films in a temperature range between 25 and 300 °C. We achieve this by developing a singular dynamic model that can be fitted in real time as a function of temperature, providing insights into how thermal annealing influences the perovskite film's morphology and optical constants. Based on the latter, we derive the temperature dependence of the thermo-optic coefficient and Urbach energy as well as analyze the interband transition energies via critical point analysis. We demonstrate that the γ- to ß-phase transition can be identified through a pronounced shift in the bandgap energy, whereas the ß- to α-phase transition can be discerned by a sharp increase in the film's roughness. We corroborate the obtained fit results with additional in- and ex situ measurements, such as in situ grazing incidence wide-angle X-ray scattering, atomic force microscopy, reflectance/transmittance, and profilometry.

5.
ACS Appl Mater Interfaces ; 15(36): 42784-42791, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37647415

RESUMEN

Photoluminescence (PL) measurements are a widely used technique for the investigation of perovskite-based materials and devices. Although electric field-induced PL quenching provides additional useful information, this phenomenon is quite complex and not yet clearly understood. Here, we address the PL quenching of methylammonium lead iodide (MAPbI3) perovskite in a light-emitting diode (PeLED) architecture. We distinguish two quenching mechanisms: (a) indirect quenching by slow irreversible or partially reversible material changes that occur gradually under the applied light and electric field and (b) direct quenching by the influence of the electric field on the charge carrier densities, their spatial distributions, and radiative recombination rates. Direct quenching, observed under the abrupt application of negative voltage, causes a decrease of the PL intensity. However, the PL intensity then partially recovers within tens of milliseconds as mobile ions screen the internal electric field. The screening time increases to hundreds of seconds at low temperatures, indicating activation energies for ion motion of about 80 meV. On the other hand, ultrafast time-resolved PL measurements revealed two main phases of direct quenching: an instantaneous reduction in the radiative carrier recombination rate, which we attribute to the electron and hole displacement within individual perovskite grains, followed by a second phase lasting hundreds of picoseconds, which is due to the charge carrier extraction and spatial separation of electron and hole "clouds" within the entire perovskite layer thickness.

6.
Adv Mater ; 34(29): e2201409, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35581173

RESUMEN

Device optimization of light-emitting diodes (LEDs) targets the most efficient conversion of electrically injected charges into emitted light. The emission zone in an LED is where charges recombine and light is emitted from. It is believed that the emission zone is strongly linked to device efficiency and lifetime. However, the emission zone size is below the optical diffraction limit, so it is difficult to measure. An accessible method based on a single emission spectrum that enables emission zone measurements with sub-second time resolution is shown. A procedure is introduced to study and control the emission zone of an LED system and correlate it with device performance. A thermally activated delayed fluorescence organic LED emission zone is experimentally measured over all luminescing current densities, while varying the device structure and while ageing. The emission zone is shown to be finely controlled by emitter doping because electron transport via the emitter is the charge-transport bottleneck of the system. Suspected quenching/degradation mechanisms are linked with the emission zone changes, device structure variation, and ageing. Using these findings, a device with an ultralong 4500 h T95 lifetime at 1000 cd m-2 with 20% external quantum efficiency is shown.

7.
Nat Commun ; 13(1): 7513, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473874

RESUMEN

The black perovskite phase of CsPbI3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI2-based interfacial microstructure into otherwise-unstable CsPbI3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.

8.
Opt Express ; 19 Suppl 1: A7-19, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263715

RESUMEN

Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency because a large fraction of power is lost to surface plasmons (SPs) and waveguide modes. In this paper it is demonstrated that periodic grating structures with almost µm-scale can be used to extract SPs as well as waveguide modes and therefore enhance the outcoupling efficiency in light-emitting thin film structures. The gratings are fabricated by nanoimprint lithography using a commercially available diffraction grating as a mold which is pressed into a polymer resist. The outcoupling of SPs and waveguide modes is detected in fluorescent organic films adjacent to a thin metal layer in angular dependent photoluminescence measurements. Scattering up to 5th-order is observed and the extracted modes are identified by comparison to the SP and waveguide dispersion obtained from optical simulations. In order to demonstrate the low-cost, high quality and large area applicability of grating structures in optoelectronic devices, we also present SP extraction using a grating structure fabricated by a common DVD stamp.


Asunto(s)
Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos , Algoritmos , Electrónica , Colorantes Fluorescentes/química , Luz , Luminiscencia , Microscopía de Fuerza Atómica/métodos , Modelos Estadísticos , Óptica y Fotónica , Compuestos Orgánicos/química , Dispersión de Radiación
9.
ACS Appl Mater Interfaces ; 13(37): 44294-44301, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498844

RESUMEN

To guarantee a long lifetime of perovskite-based photovoltaics, the selected materials need to survive relatively high-temperature stress during the solar cell operation. Highly efficient n-i-p perovskite solar cells (PSCs) often degrade at high operational temperatures due to morphological instability of the hole transport material 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (Spiro-OMeTAD). We discovered that the detrimental large-domain spiro-OMeTAD crystallization is caused by the simultaneous presence of tert-butylpyridine (tBP) additive and gold (Au) as a capping layer. Based on this discovery and our understanding, we demonstrated facile strategies that successfully stabilize the amorphous phase of spiro-OMeTAD film. As a result, the thermal stability of n-i-p PSCs is largely improved. After the spiro-OMeTAD films in the PSCs were stressed for 1032 h at 85 °C in the dark in nitrogen environment, reference PSCs retained only 22% of their initial average power conversion efficiency (PCE), while the best target PSCs retained 85% relative average PCE. Our work suggests facile ways to realize efficient and thermally stable spiro-OMeTAD containing n-i-p PSCs.

10.
ACS Appl Electron Mater ; 3(7): 3023-3033, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337416

RESUMEN

Following the rapid increase of organic metal halide perovskites toward commercial application in thin-film solar cells, inorganic alternatives attracted great interest with their potential of longer device lifetime due to the stability improvement under increased temperatures and moisture ingress. Among them, cesium lead iodide (CsPbI3) has gained significant attention due to similar electronic and optical properties to methylammonium lead iodide (MAPbI3), with a band gap of 1.7 eV, high absorption coefficient, and large diffusion length, while also offering the advantage of being completely inorganic, providing a higher thermal stability and preventing material degradation. On a device level, however, it seems also essential to replace organic transport layers by inorganic counterparts to further prevent degradation. In addition, devices are mostly fabricated by spin coating, limiting their reproducibility and scalability; in this case, exploring all-evaporated devices allows us to improve the quality of the layers and to increase their reproducibility. In this work, we focus on the deposition of CsPbI3 by CsI and PbI2 co-evaporation. We fabricate devices with an all-inorganic, all-evaporated structure, employing NiO and TiO2 as transport layers, and evaluate these devices for both photodetector and solar cell applications. As a photodetector, low leakage current, high external quantum efficiency (EQE) and detectivity, and fast rise and decay times were obtained, while as a solar cell, acceptable efficiencies were achieved. These all-inorganic, all-evaporated devices represent one step forward toward higher stability and reproducibility while enabling large area compatibility and easier integration with other circuitry and, in future, the possible commercialization of perovskite-based technology.

11.
Nat Electron ; 2(12): 606-611, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31872176

RESUMEN

Capacitive touchscreens are increasingly widespread, featuring in mobile phones and tablets, as well as everyday objects such as cars and home appliances. As a result, the interfaces are uniquely placed to provide a means of communication in the era of the Internet of Everything. Here we show that commercial touchscreens can be used as reader interfaces for capacitive coupled data transfer. The transfer of data to the touchscreen is achieved using a 12-bit thin-film capacitive radio frequency identification tag powered by a thin-film battery or a thin-film photovoltaic cell that converts light from the screen. The thin-film integrated circuit has a 0.8 cm2 on-chip monolithic antenna, employs 439 transistors, and dissipates only 31 nW of power at a supply voltage of 600 mV. The chip has an asynchronous data rate of up to 36 bps, which is limited by the touchscreen readout electronics.

12.
ACS Appl Mater Interfaces ; 11(18): 16517-16526, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30998002

RESUMEN

With the realization of highly efficient perovskite solar cells, the long-term stability of these devices is the key challenge hindering their commercialization. In this work, we study the temperature-dependent stability of perovskite solar cells and develop a model capable of predicting the lifetime and energy yield of perovskite solar cells outdoors. This model results from the measurement of the kinetics governing the degradation of perovskite solar cells at elevated temperatures. The individual analysis of all key current-voltage parameters enables the prediction of device performance under thermal stress with high precision. An extrapolation of the device lifetime at various European locations based on historical weather data illustrates the relation between the laboratory data and real-world applications. Finally, the understanding of the degradation mechanisms affecting perovskite solar cells allows the definition and implementation of strategies to enhance the thermal stability of perovskite solar cells.

13.
Glob Chall ; 2(7): 1800008, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31565338

RESUMEN

Photovoltaic cells and modules are exposed to partially rapid changing environmental parameters that influence the device temperature. The evolution of the device temperature of a perovskite module of 225 cm2 area is presented during a period of 25 days under central European conditions. The temperature of the glass-glass packaged perovskite solar module is directly measured at the back contact by a thermocouple. The device is exposed to ambient temperatures from 3 to 34 °C up to solar irradiation levels exceeding 1300 W m-2. The highest recorded module temperature is 61 °C under constant high irradiation levels. Under strong fluctuations of the global solar irradiance, temperature gradients of more than 3 K min-1 with total changes of more than 20 K are measured. Based on the experimental data, a dynamic iterative model is developed for the module temperature evolution in dependence on ambient temperature and solar irradiation. Furthermore, specific thermal device properties that enable an extrapolation of the module response beyond the measured parameter space can be determined. With this set of parameters, it can be predicted that the temperature of the perovskite layer in thin-film photovoltaic devices is exceeding 70 °C under realistic outdoor conditions. Additionally, perovskite module temperatures can be calculated in final applications.

14.
ACS Appl Mater Interfaces ; 10(19): 16390-16399, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29687715

RESUMEN

This paper reports on the impact of outdoor temperature variations on the performance of organo metal halide perovskite solar cells (PSCs). It shows that the open-circuit voltage ( VOC) of a PSC decreases linearly with increasing temperature. Interestingly, in contrast to these expected trends, the current density ( JSC) of PSCs is found to decline strongly below 20% of the initial value upon cycling the temperatures from 10 to 60 °C and back. This decline in the current density is driven by an increasing series resistance and is caused by the fast temperature variations as it is not apparent for solar cells exposed to constant temperatures of the same range. The effect is fully reversible when the devices are kept illuminated at an open circuit for several hours. Given these observations, an explanation that ascribes the temperature variation-induced performance decline to ion accumulation at the contacts of the solar cell because of temperature variation-induced changes of the built-in field of the PSC is proposed. The effect might be a major obstacle for perovskite photovoltaics because the devices exposed to real outdoor temperature profiles over 4 h showed a performance decline of >15% when operated at a maximum power point.

15.
Materials (Basel) ; 6(7): 3022-3034, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-28811420

RESUMEN

A previously reported diketopyrrolopyrrole (DPP)-phenyl copolymer is modified by adding methoxy or octyloxy side chains on the phenyl spacer. The influence of these alkoxy substitutions on the physical, opto-electronic properties, and photovoltaic performance were investigated. It was found that the altered physical properties correlated with an increase in chain flexibility. Well-defined oligomers were synthesized to verify the observed structure-property relationship. Surprisingly, methoxy substitution on the benzene spacer resulted in higher melting and crystallization temperatures in the synthesized oligomers. This trend is not observed in the polymers, where the improved interactions are most likely counteracted by the larger conformational possibilities in the polymer chain upon alkoxy substitution. The best photovoltaic performance was obtained for the parent polymer: fullerene blends whereas the modifications on the other two polymers result in reduced open-circuit voltage and varying current densities under similar processing conditions. The current densities could be related to different polymer: fullerene blend morphologies. These results show that supposed small structural alterations such as methoxy substitution already significantly altered the physical properties of the parent polymer and also that oligomers and polymers respond divergent to structural alterations made on a parent structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA