Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mutat ; 42(4): 373-377, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492714

RESUMEN

Bi-allelic loss-of-function variants of OTOA are a well-known cause of moderate-to-severe hearing loss. Whereas non-allelic homologous recombination-mediated deletions of the gene are well known, gene conversions to pseudogene OTOAP1 have been reported in the literature but never fully described nor their pathogenicity assessed. Here, we report two unrelated patients with moderate hearing-loss, who were compound heterozygotes for a converted allele and a deletion of OTOA. The conversions were initially detected through sequencing depths anomalies at the OTOA locus after exome sequencing, then confirmed with long range polymerase chain reactions. Both conversions lead to loss-of-function by introducing a premature stop codon in exon 22 (p.Glu787*). Using genomic alignments and long read nanopore sequencing, we found that the two probands carry stretches of converted DNA of widely different lengths (at least 9 kbp and around 900 bp, respectively).


Asunto(s)
Sordera , Proteínas Ligadas a GPI , Pérdida Auditiva , Alelos , Sordera/genética , Proteínas Ligadas a GPI/genética , Conversión Génica , Pérdida Auditiva/genética , Humanos , Linaje , Secuenciación del Exoma
2.
Nature ; 508(7496): 345-50, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24740065

RESUMEN

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


Asunto(s)
Síndrome de Down/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Transcriptoma/genética , Animales , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos Par 21/genética , Cromosomas de los Mamíferos/genética , Momento de Replicación del ADN , Síndrome de Down/patología , Femenino , Feto/citología , Fibroblastos , Histonas/química , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Masculino , Metilación , Ratones , Gemelos Monocigóticos/genética
3.
PLoS Genet ; 11(1): e1004958, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25634236

RESUMEN

Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans' lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types). This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore, the details of how this tissue-specificity may vary across inter-relations of molecular traits, and where these are occurring, can yield further insights into gene regulation and cellular biology as a whole.


Asunto(s)
Empalme Alternativo/genética , Metilación de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Variación Genética , Alelos , Islas de CpG , Humanos , Recién Nacido , Especificidad de Órganos , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/genética
4.
Hum Mol Genet ; 24(11): 3082-91, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25691535

RESUMEN

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Galanina/genética , Adulto , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Mutación Missense , Linaje , Unión Proteica , Transducción de Señal
6.
Genome Res ; 21(1): 68-73, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21147911

RESUMEN

MicroRNAs (miRNAs) are regulatory noncoding RNAs that affect the production of a significant fraction of human mRNAs via post-transcriptional regulation. Interindividual variation of the miRNA expression levels is likely to influence the expression of miRNA target genes and may therefore contribute to phenotypic differences in humans, including susceptibility to common disorders. The extent to which miRNA levels are genetically controlled is largely unknown. In this report, we assayed the expression levels of miRNAs in primary fibroblasts from 180 European newborns of the GenCord project and performed association analysis to identify eQTLs (expression quantitative traits loci). We detected robust expression for 121 miRNAs out of 365 interrogated. We have identified significant cis- (10%) and trans- (11%) eQTLs. Furthermore, we detected one genomic locus (rs1522653) that influences the expression levels of five miRNAs, thus unraveling a novel mechanism for coregulation of miRNA expression.


Asunto(s)
Elementos de Facilitación Genéticos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Sitios de Carácter Cuantitativo/genética , Procesamiento Postranscripcional del ARN , Línea Celular , Europa (Continente) , Perfilación de la Expresión Génica , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , MicroARNs/genética
7.
Am J Hum Genet ; 82(4): 971-81, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18394580

RESUMEN

The elucidation of the largely unknown transcriptome of small RNAs is crucial for the understanding of genome and cellular function. We report here the results of the analysis of small RNAs (< 50 nt) in the ENCODE regions of the human genome. Size-fractionated RNAs from four different cell lines (HepG2, HelaS3, GM06990, SK-N-SH) were mapped with the forward and reverse ENCODE high-density resolution tiling arrays. The top 1% of hybridization signals are termed SmRfrags (Small RNA fragments). Eight percent of SmRfrags overlap the GENCODE genes (CDS), given that the majority map to intergenic regions (34%), intronic regions (53%), and untranslated regions (UTRs) (5%). In addition, 9.6% and 16.8% of SmRfrags in the 5' UTR regions overlap significantly with His/Pol II/TAF250 binding sites and DNase I Hypersensitive sites, respectively (compared to the 5.3% and 9% expected). Interestingly, 17%-24% (depending on the cell line) of SmRfrags are sense-antisense strand pairs that show evidence of overlapping transcription. Only 3.4% and 7.2% of SmRfrags in intergenic regions overlap transcribed fragments (Txfrags) in HeLa and GM06990 cell lines, respectively. We hypothesized that a fraction of the identified SmRfrags corresponded to microRNAs. We tested by Northern blot a set of 15 high-likelihood predictions of microRNA candidates that overlap with smRfrags and validated three potential microRNAs ( approximately 20 nt length). Notably, most of the remaining candidates showed a larger hybridizing band ( approximately 100 nt) that could be a microRNA precursor. The small RNA transcriptome is emerging as an important and abundant component of the genome function.


Asunto(s)
Mapeo Cromosómico , Genoma Humano/genética , MicroARNs/genética , Transcripción Genética , Regiones no Traducidas 5'/genética , Secuencia de Bases , Línea Celular Tumoral , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
Genes (Basel) ; 12(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440452

RESUMEN

PURPOSE: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. METHODS: We performed whole-exome sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. RESULTS: The overall diagnostic rate using exome sequencing was 47.2% (52.5% in children; 22% in adults). In children with confirmed molecular results, 17/32 (53.2%) showed autosomal recessive inheritance patterns, 14/32 (43.75%) showed an autosomal dominant condition, and one case had X-linked hearing loss. In adults, the two patients showed an autosomal dominant inheritance pattern. Among the 32 children, 17 (53.1%) had nonsyndromic hearing loss and 15 (46.7%) had syndromic hearing loss. One adult was diagnosed with syndromic hearing loss and one with nonsyndromic hearing loss. The most common causative genes were STRC (5 cases), GJB2 (3 cases), COL11A1 (3 cases), and ACTG1 (3 cases). CONCLUSIONS: Exome sequencing has a high diagnostic yield in children with hearing loss and can reveal a syndromic hearing loss form before other organs/systems become involved, allowing the surveillance of unrecognized present and/or future complications associated with these syndromes.


Asunto(s)
Actinas/genética , Colágeno Tipo XI/genética , Conexina 26/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Adulto , Niño , Preescolar , Sordera/diagnóstico , Sordera/patología , Exoma/genética , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Mutación/genética , Patología Molecular , Linaje , Secuenciación del Exoma/normas
9.
J Neurosci Res ; 87(14): 3143-52, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19472221

RESUMEN

Down's syndrome neurophenotypes are characterized by mental retardation and a decreased brain volume. To identify whether deficits in proliferation could be responsible for this phenotype, neural progenitor cells were isolated from the developing E14 neocortex of Down's syndrome partial trisomy Ts1Cje mice and euploid (WT) littermates and grown as neurospheres. Ts1Cje neural progenitors proliferated at a slower rate, because of a longer cell cycle, and a greater number of cells were positive for glial fibrillary acidic protein. An increase in cell death was also noted. Gene expression profiles of neural progenitor cells from Ts1Cje and WT showed that 54% of triploid genes had expression ratios (Ts1Cje/WT) significantly greater than the expected diploid gene ratio of 1.0. Some diploid genes associated with proliferation, differentiation, and glial function were dysregulated. Interestingly, proliferation and gene expression dysregulation detected in the Ts1Cje mice did not require overexpression of the chromosome 21 genes amyloid precursor protein (App) and soluble superoxide dismutase 1 (Sod1).


Asunto(s)
Proliferación Celular , Expresión Génica/fisiología , Neuronas/patología , Neuronas/fisiología , Células Madre/patología , Animales , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Síndrome de Down , Perfilación de la Expresión Génica , Genotipo , Inmunohistoquímica , Masculino , Ratones , Microesferas , Neocórtex/fisiopatología , Neuroglía/patología , Neuroglía/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología
10.
Hum Mutat ; 29(6): 879-85, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18409188

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a heterogeneous autosomal dominant cardiac disorder with a prevalence of 1 in 500. Over 450 different pathogenic mutations in at least 16 genes have been identified so far. The large allelic and genetic heterogeneity of HCM requires high-throughput, rapid, and affordable mutation detection technologies to efficiently integrate molecular screening into clinical practice. We developed a custom DNA resequencing array that contains both strands of all coding exons (160), splice-site junctions, and 5'UTR regions of 12 genes that have been clearly implicated in HCM (MYH7, MYBPC3, TNNT2, TPM1, TNNI3, MYL3, MYL2, CSRP3, PLN, ACTC, TNNC1, and PRKAG2). We analyzed a first series of 38 unrelated patients with HCM (17 familial, 21 sporadic). A total of 953,306 bp across the 38 patients were sequenced with a mean nucleotide call rate of 96.92% (range: 93-99.9%). Pathogenic mutations (single nucleotide substitutions) in MYH7, MYBPC3, TNNI3, and MYL3 (six known and six novel) were identified in 60% (10/17) of familial HCM and 10% of sporadic cases (2/21). The high-throughput HCM resequencing array is the most rapid and cost-effective tool for molecular testing of HCM to date; it thus has considerable potential in diagnostic and predictive testing, and prognostic stratification.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica Familiar/diagnóstico , Análisis Mutacional de ADN , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/economía
11.
Am J Med Genet A ; 146A(16): 2086-93, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18627064

RESUMEN

We report on a monochorionic/diamniotic twin pregnancy discordant for trisomy 21. Amniocentesis (at 13(5/7) weeks) was performed following ultrasound signs of hydrops and cystic hygroma in twin 1 (T1). Prenatal karyotype showed non-mosaic trisomy 21 in T1 (47,XX,+21[7]), and low-grade mosaic trisomy 21 in twin 2 (T2) (47,XX,+21[2]/46,XX[19]). Post mortem examination of fetal skin, kidneys and lungs confirmed trisomy 21 in T1 (47,XX,+21[548]) and the placenta (47,XX,+21[200]). T2 had a normal karyotype (46,XX[648]). Analysis of microsatellite polymorphisms in multiple samples from the placenta, hand, lungs, kidneys and the umbilical cords of both twins confirmed monozygosity for all loci tested, and trisomy 21 in T1. Unexpectedly, T1 and T2 inherited different maternal alleles for markers of the most distal 4 Mbp of 21q. At least four successive events are needed to explain the genetic status of both twins and include maternal MI premature chromatids separation or maternal II meiotic nondisjunction and post-zygotic events such as, chromosome rescue, nondisjunction, an/or recombination.


Asunto(s)
Cromosomas Humanos Par 21/genética , Enfermedades en Gemelos , Síndrome de Down/genética , Diagnóstico Prenatal , Gemelos Monocigóticos , Amniocentesis , Femenino , Marcadores Genéticos , Genotipo , Humanos , Cariotipificación , Repeticiones de Microsatélite , No Disyunción Genética , Polimorfismo Genético , Embarazo
12.
Nat Commun ; 8: 14279, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176794

RESUMEN

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Dineínas Axonemales/metabolismo , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Síndrome de Kartagener/genética , Proteínas de Microtúbulos/genética , Chaperonas Moleculares/genética , Adolescente , Adulto , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axonema/patología , Niño , Preescolar , Cilios/patología , Cilios/ultraestructura , Citoplasma/patología , Modelos Animales de Enfermedad , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intracelular , Síndrome de Kartagener/patología , Masculino , Microscopía Electrónica de Transmisión , Linaje , Filogenia , Mutación Puntual , Pliegue de Proteína , Alineación de Secuencia , Eliminación de Secuencia , Motilidad Espermática/genética , Secuenciación del Exoma , Pez Cebra
13.
PLoS One ; 10(8): e0135555, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317209

RESUMEN

DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.


Asunto(s)
Metilación de ADN , Síndrome de Down/genética , Gemelos Monocigóticos , Islas de CpG , Síndrome de Down/metabolismo , Epigénesis Genética , Fibroblastos , Regulación de la Expresión Génica , Biblioteca de Genes , Histonas/metabolismo , Humanos , Fenotipo , Regiones Promotoras Genéticas
14.
Stem Cell Res ; 12(2): 323-37, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24365598

RESUMEN

Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis.


Asunto(s)
Células Madre Embrionarias/fisiología , MicroARNs/genética , Miocitos Cardíacos/fisiología , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Humanos , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Transfección
15.
PLoS One ; 9(11): e112745, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25420024

RESUMEN

Schizophrenia (SCZ) is a severe, debilitating mental illness which has a significant genetic component. The identification of genetic factors related to SCZ has been challenging and these factors remain largely unknown. To evaluate the contribution of de novo variants (DNVs) to SCZ, we sequenced the exomes of 53 individuals with sporadic SCZ and of their non-affected parents. We identified 49 DNVs, 18 of which were predicted to alter gene function, including 13 damaging missense mutations, 2 conserved splice site mutations, 2 nonsense mutations, and 1 frameshift deletion. The average number of exonic DNV per proband was 0.88, which corresponds to an exonic point mutation rate of 1.7×10(-8) per nucleotide per generation. The non-synonymous-to-synonymous mutation ratio of 2.06 did not differ from neutral expectations. Overall, this study provides a list of 18 putative candidate genes for sporadic SCZ, and when combined with the results of similar reports, identifies a second proband carrying a non-synonymous DNV in the RGS12 gene.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Esquizofrenia/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Mutación , Mutación Missense , Sitios de Empalme de ARN/genética
16.
Elife ; 2: e00523, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23755361

RESUMEN

DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression. DOI:http://dx.doi.org/10.7554/eLife.00523.001.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Variación Genética , Alelos , Células Cultivadas , Humanos , Recién Nacido , Reacción en Cadena de la Polimerasa , Factores de Transcripción/metabolismo
17.
PLoS One ; 6(3): e17634, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21408183

RESUMEN

Comparative analyses of various mammalian genomes have identified numerous conserved non-coding (CNC) DNA elements that display striking conservation among species, suggesting that they have maintained specific functions throughout evolution. CNC function remains poorly understood, although recent studies have identified a role in gene regulation. We hypothesized that the identification of genomic loci that interact physically with CNCs would provide information on their functions. We have used circular chromosome conformation capture (4C) to characterize interactions of 10 CNCs from human chromosome 21 in K562 cells. The data provide evidence that CNCs are capable of interacting with loci that are enriched for CNCs. The number of trans interactions varies among CNCs; some show interactions with many loci, while others interact with few. Some of the tested CNCs are capable of driving the expression of a reporter gene in the mouse embryo, and associate with the oligodendrocyte genes OLIG1 and OLIG2. Our results underscore the power of chromosome conformation capture for the identification of targets of functional DNA elements and raise the possibility that CNCs exert their functions by physical association with defined genomic regions enriched in CNCs. These CNC-CNC interactions may in part explain their stringent conservation as a group of regulatory sequences.


Asunto(s)
Cromosomas Humanos/química , Cromosomas Humanos/genética , Secuencia Conservada/genética , ADN Intergénico/genética , Genoma Humano/genética , Conformación de Ácido Nucleico , Animales , Secuencia de Bases , ADN Circular/genética , Humanos , Células K562 , Región de Control de Posición/genética , Ratones , Oligodendroglía/metabolismo , Sistemas de Lectura Abierta/genética , Globinas beta/genética
18.
Nat Genet ; 44(2): 133-9, 2011 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-22197931

RESUMEN

We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.


Asunto(s)
Exoma/genética , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Melanoma/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Mutación , Neoplasias Cutáneas/genética , Secuencia de Bases , Cadherinas/genética , Línea Celular Tumoral , Estudios de Cohortes , Reparación del ADN/genética , Desmocolinas , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas B-raf/genética , Receptores de LDL/genética , Proteínas Supresoras de Tumor/genética , Rayos Ultravioleta/efectos adversos
20.
PLoS One ; 4(8): e6659, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19684856

RESUMEN

Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb) and 7 (1.1 Mb) from an individual from the International HapMap Project (NA12872). We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.


Asunto(s)
ADN/genética , Variación Genética , Genoma Humano , Mapeo Cromosómico , Cromosomas Humanos Par 21 , Humanos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA