Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Insect Mol Biol ; 33(2): 147-156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37962063

RESUMEN

Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.


Asunto(s)
Plaguicidas , Humanos , Animales , Abejas/genética , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Filogenia , Ácido Zoledrónico
2.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409869

RESUMEN

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Asunto(s)
Ecdisterona , Indometacina , Humanos , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insectos/metabolismo , Línea Celular , Hormonas , Sistema Nervioso/metabolismo , Proteínas de Insectos/metabolismo
3.
Pestic Biochem Physiol ; 190: 105317, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740333

RESUMEN

Cell penetrating peptides (CPPs) are small peptides defined by their ability to deliver molecular cargo into cells. While the subject of frequent investigation for pharmaceutical drug delivery, little consideration has been given to the possibility of CPPs for use as insecticides or insecticide enhancers. Here, we characterize the entry of four fluorescently tagged CPPs into two insect cell lines and dissected midgut tissues in terms of both total quantity and mode of penetration. Fluorescent microscopy showed that substantial amounts of CPPs penetrate the plasma membrane via endosomal uptake in ovarian (Sf9) and midgut derived (AW1) lepidopteran cells and that this process was sensitive to selected endocytosis inhibitors. Differences in the quantity of uptake was observed between CPPs, and further differences were found in the ability CPP-1838 to efficiently penetrate membranes through passive diffusion. These findings were extended to primary midgut derived cells and dissected tissues suggesting that CPPs show a preference for goblet cells and that CPP-1838 shows far higher rates of penetration. CPP-1838 thus shows extraordinary abilities to penetrate cells efficiency in both a diffusional and endocytotic manner. From these results more sophisticated delivery methods based on the utilization of CPPs can be developed.


Asunto(s)
Péptidos de Penetración Celular , Animales , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Transporte Biológico , Membrana Celular , Sistemas de Liberación de Medicamentos , Insectos
4.
BMC Genomics ; 23(1): 75, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073840

RESUMEN

BACKGROUND: Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. RESULTS: Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. CONCLUSIONS: This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field.


Asunto(s)
Mariposas Nocturnas , Animales , Sistema Digestivo , Concentración de Iones de Hidrógeno , Larva , Nutrientes
5.
Proc Biol Sci ; 289(1975): 20220625, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35582794

RESUMEN

Pesticides remain one of the most effective ways of controlling agricultural and public health insects, but much is still unknown regarding how these compounds reach their targets. Specifically, the role of ABC transporters in pesticide absorption and excretion is poorly understood, especially compared to the detailed knowledge about mammalian systems. Here, we present a comprehensive characterization of pesticide transporters in the model insect Drosophila melanogaster. An RNAi screen was performed, which knocked down individual ABCs in specific epithelial tissues and examined the subsequent changes in sensitivity to the pesticides spinosad and fipronil. This implicated a novel ABC drug transporter, CG4562, in spinosad transport, but also highlighted the P-glycoprotein orthologue Mdr65 as the most impactful ABC in terms of chemoprotection. Further characterization of the P-glycoprotein family was performed via transgenic overexpression and immunolocalization, finding that Mdr49 and Mdr50 play enigmatic roles in pesticide toxicology perhaps determined by their different subcellular localizations within the midgut. Lastly, transgenic Drosophila lines expressing P-glycoprotein from the major malaria vector Anopheles gambiae were used to establish a system for in vivo characterization of this transporter in non-model insects. This study provides the basis for establishing Drosophila as a model for toxicology research on drug transporters.


Asunto(s)
Anopheles , Insecticidas , Malaria , Plaguicidas , Subfamilia B de Transportador de Casetes de Unión a ATP/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacología , Transportadoras de Casetes de Unión a ATP , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Mamíferos , Mosquitos Vectores , Plaguicidas/toxicidad
6.
Pestic Biochem Physiol ; 188: 105235, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464352

RESUMEN

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) is the most economically important mite pest in agricultural areas and chemical acaricides are widely used to control T. urticae populations. Cyflumetofen is a recently introduced acaricide that inhibits the mitochondrial electron transport chain at complex II (succinate dehydrogenase, SDH), which represents the most recently developed mode of action for mite control worldwide. In the present study, started upon the launch of cyflumetofen in Turkey, a five-year survey was performed to monitor cyflumetofen susceptibility in 28 T. urticae populations collected from agricultural fields across the country. The first resistance case that might cause control failure in practical field conditions was uncovered in 2019, three years after the registration of cyflumetofen. In addition, an extremely resistant population (1722-fold resistance) was also detected towards the end of 2019. Cyflumetofen resistance did not decrease in the laboratory after relaxation of selection pressure for over one year in field-collected populations, suggesting the absence of a fitness cost associated with resistance in these populations. Next to phenotypic resistance, metabolic and physiological mechanisms underlying the decreased susceptibility were also investigated. Synergism assays showed the involvement of P450 monooxygenases in cyflumetofen resistance. Downregulation of carboxylesterases as resistance mechanism, is underpinned by the fact that pre-treatment with esterase inhibitor DEF decreased cyflumetofen toxicity in field-collected strains. Furthermore, a novel H258L substitution in the subunit B of complex II was uncovered in a field population. In silico modeling of the new mutation suggested that the mutation might indeed influence toxicity to complex II inhibitors cyenopyrafen and pyflubumide, but most likely not cyflumetofen. However, further studies are needed to uncover the exact role of this mutation in resistance to this new class of complex II inhibitors.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Tetranychidae/genética , Turquía , Propionatos/toxicidad , Acaricidas/farmacología
7.
BMC Genomics ; 22(1): 553, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281528

RESUMEN

BACKGROUND: The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS: Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS: We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.


Asunto(s)
Artrópodos , Transportadoras de Casetes de Unión a ATP/genética , Animales , Artrópodos/genética , Genoma , Genómica , Humanos , Anotación de Secuencia Molecular
8.
Front Zool ; 18(1): 60, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863212

RESUMEN

RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.

9.
Pestic Biochem Physiol ; 176: 104870, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34119215

RESUMEN

RNA interference (RNAi) is a promising, selective pest control technology based on the silencing of targeted genes mediated by the degradation of mRNA after the ingestion of double-stranded (ds) RNA. However, the identification of the best target genes remains a challenge, because large scale screening is only feasible in lab model systems and it remains unclear, to what degree such data can be transferred to pest species. Here, we report on our efforts to transfer target genes found in a lab model to the mustard leaf beetle, Phaedon cochleariae. The mustard leaf beetle can be reared easily and resource-efficient in large quantities all year round and is an established chrysomelid pest for higher throughput screening approaches in the crop protection industry. Mustard leaf beetle transcriptome sequencing and assembly revealed genes orthologous to those previously described as highly efficient RNAi targets in the model beetle Tribolium castaneum. First, we observed mortality after injection of dsRNA targeting the respective orthologous genes in 2nd instar mustard beetle larvae. Next, we adopted a robust, automated multi-well plate foliar RNAi screening procedure with 2nd instar larvae of the mustard leaf beetle to assess those genes. Indeed, foliar application and oral uptake of dsRNA targeting the same genes resulted in larval mortality as well. The most effective target genes with a strong (lethal) phenotype - at dsRNA doses as low as 300 ng/leaf disc (equal to 9.6 g/ha) - were srp54k, rop, αSNAP, rpn7 and rpt3. Rather limited effects were observed after application of dsRNA targeting cactus, shibire and PP-α, though they had previously been shown to be highly lethal in red flour beetle. Importantly, our experiments demonstrated that the overall efficacy pattern obtained after oral dsRNA application was well correlated with the results obtained after dsRNA injection. RT-qPCR confirmed significant target gene knock-down after normalization by employing three reference genes shown to be stably expressed across life stages. In summary, several RNAi targeted genes elicited a strong lethal phenotype and significant target gene knock-down after feeding, suggesting P. cochleariae as a potential coleopteran screening model for foliarly applied exogenous RNAi.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Larva , Planta de la Mostaza , Interferencia de ARN , ARN Bicatenario/genética , Tribolium/genética
10.
BMC Genomics ; 21(1): 129, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32028881

RESUMEN

BACKGROUND: Stink bugs are an emerging threat to crop security in many parts of the globe, but there are few genetic resources available to study their physiology at a molecular level. This is especially true for tissues such as the midgut, which forms the barrier between ingested material and the inside of the body. RESULTS: Here, we focus on the midgut of the southern green stink bug Nezara viridula and use both transcriptomic and proteomic approaches to create an atlas of expression along the four compartments of the anterior-posterior axis. Estimates of the transcriptome completeness were high, which led us to compare our predicted gene set to other related stink bugs and Hemiptera, finding a high number of species-specific genes in N. viridula. To understand midgut function, gene ontology and gene family enrichment analyses were performed for the most highly expressed and specific genes in each midgut compartment. These data suggested a role for the anterior midgut (regions M1-M3) in digestion and xenobiotic metabolism, while the most posterior compartment (M4) was enriched in transmembrane proteins. A more detailed characterization of these findings was undertaken by identifying individual members of the cytochrome P450 superfamily and nutrient transporters thought to absorb amino acids or sugars. CONCLUSIONS: These findings represent an initial step to understand the compartmentalization and physiology of the N. viridula midgut at a genetic level. Future studies will be able to build on this work and explore the molecular physiology of the stink bug midgut.


Asunto(s)
Heterópteros/genética , Heterópteros/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Heterópteros/enzimología , Proteínas de Transporte de Membrana/metabolismo , Nutrientes/metabolismo , Proteómica , Xenobióticos/metabolismo
11.
Arch Insect Biochem Physiol ; 103(3): e21650, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31833096

RESUMEN

Stink bugs are an emerging pest in many regions of the world but their molecular biology is still poorly understood. While several transcriptomes are available, the lack of validated gene manipulation tools like RNA interference (RNAi) in species such as the southern green stinkbug Nezara viridula precludes the characterization of individual genes in vivo. Such tools are particularly useful in performing high-throughput screens to search for essential genes that can be prioritized as potential insecticide targets. Here, we developed and optimized an efficient RNAi in N. viridula for use in insecticide target discovery and beyond. The visible marker Sex combs reduced and the essential gene Actin were used to verify the usability and efficiency of RNAi by microinjection at both the adult and nymphal stages, respectively, with nymphal approach presenting significant advantages. Following validation, RNAi was then used to measure lethality following the knockdown (KD) of two genes that are known insecticide targets, Chitin synthase, and Acetyl-CoA carboxylase. The KD of each gene resulted in >75% corrected mortality. These results indicate that RNAi is an effective tool in N. viridula and set a benchmark to evaluate potential targets in future RNAi screens aimed at insecticide target discovery.


Asunto(s)
Heterópteros/efectos de los fármacos , Heterópteros/metabolismo , Insecticidas/farmacología , Interferencia de ARN , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
12.
Pestic Biochem Physiol ; 166: 104569, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32448424

RESUMEN

In recent years, substantial effort was spent on the exploration and implementation of RNAi technology using double-stranded RNA (dsRNA) for pest management purposes. However, only few studies investigated the geographical variation in RNAi sensitivity present in field-collected populations of the targeted insect pest. In this baseline study, 2nd instar larvae of 14 different European populations of Colorado potato beetle (CPB), Leptinotarsa decemlineata, collected from nine different countries were exposed to a foliarly applied diagnostic dose of dsactin (dsact) to test for possible variations in RNAi response. Only minor variability in RNAi sensitivity was observed between populations. However, the time necessary to trigger a dsRNA-mediated phenotypic response varied significantly among populations, indicated by significant differences in mortality figures obtained five days after treatment. An inbred German laboratory reference strain D01 and a Spanish field strain E02 showed almost 100% mortality after foliar exposure to 30 ng dsactin (equal to 0.96 g/ha), whereas another Spanish strain E01 was least responsive and showed only 30% mortality. Calculated LD50-values for foliarly applied dsact against strains D01 (most sensitive) and E01 (least sensitive) were 9.22 and 68.7 ng/leaf disc, respectively. The variability was not based on target gene sequence divergence or knock-down efficiency. Variability in expression of the core RNAi machinery genes dicer (dcr2a) and argonaute (ago2a) was observed but did not correlate with sensitivity. Interestingly, RT-qPCR data collected for all strains revealed a strong correlation between the expression level of dcr2a and ago2a (r 0.93) as well as ago2a and stauC (r 0.94), a recently described dsRNA binding protein in Coleopterans. Overall, this study demonstrates that sensitivity of CPB to sprayable RNAi slightly varies between strains but also shows that foliar RNAi as a control method works against all tested CPB populations collected across a broad geographic range in Europe. Thus, underpinning the potential of RNAi-based CPB control as a promising component in integrated pest management (IPM) and resistance management programs.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Larva , Interferencia de ARN , ARN Bicatenario
13.
Pestic Biochem Physiol ; 164: 73-84, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284140

RESUMEN

The citrus red mite, Panonychus citri, is a major pest on citrus all around the world. Mitochondrial Electron Transport Inhibitors of complex I (METI-I) acaricides such as fenpyroximate have been used extensively to control P. citri populations, which resulted in multiple reports of METI-I resistant populations in the field. In this study, biochemical and molecular mechanisms of fenpyroximate resistance were investigated in P. citri. Seven populations were collected from Northern provinces of Iran. Resistance ratios were determined and reached up to 75-fold in comparison to a fenpyroximate susceptible population. Cross-resistance to two additional METI-I acaricides, pyridaben and tebufenpyrad, was detected. PBO synergism experiments, in vivo enzyme assays and gene expression analysis suggest a minor involvement of cytochrome P450 monooxygenases in fenpyroximate resistance, which is in contrast with many reported cases for the closely related Tetranychus urticae. Next, we determined the frequency of a well-known mutation in the target-site of METI-Is, the PSST subunit, associated with METI-I resistance. Indeed, the H92R substitution was detected in a highly fenpyroximate resistant P. citri population. Additionally, a new amino acid substitution at a conserved site in the PSST subunit was detected, A94V, with higher allele frequencies in a moderately resistant population. Marker-assisted back-crossing in a susceptible background confirmed the potential involvement of the newly discovered A94V mutation in fenpyroximate resistance. However, introduction of the A94V mutation in the PSST homologue of D. melanogaster using CRISPR-Cas9 did not result in fenpyroximate resistant flies. In addition, differences in binding curves between METI-Is and complex I measured directly, in isolated transgenic and wildtype mitochondria preparations, could not be found.


Asunto(s)
Acaricidas , Citrus , Tetranychidae , Animales , Drosophila melanogaster , Irán
14.
Insect Biochem Mol Biol ; 170: 104127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657708

RESUMEN

Mitochondrial electron transfer inhibitors at complex II (METI-II), also referred to as succinate dehydrogenase inhibitors (SDHI), represent a recently developed class of acaricides encompassing cyflumetofen, cyenopyrafen, pyflubumide and cyetpyrafen. Despite their novelty, resistance has already developed in the target pest, Tetranychus urticae. In this study a new mutation, H146Q in a highly conserved region of subunit B of complex II, was identified in a T. urticae population resistant to all METI-IIs. In contrast to previously described mutations, H146Q is located outside the ubiquinone binding site of complex II. Marker-assisted backcrossing of this mutation in a susceptible genetic background validated its association with resistance to cyflumetofen and pyflubumide, but not cyenopyrafen or cyetpyrafen. Biochemical assays and the construction of inhibition curves with isolated mitochondria corroborated this selectivity. In addition, phenotypic effects of H146Q, together with the previously described H258L, were further examined via CRISPR/Cas9 gene editing. Although both mutations were successfully introduced into a susceptible T. urticae population, the H146Q gene editing event was only recovered in individuals already harboring the I260V mutation, known to confer resistance towards cyflumetofen. The combination of H146Q + I260V conferred high resistance levels to all METI-II acaricides with LC50 values over 5000 mg a.i./L for cyflumetofen and pyflubumide. Similarly, the introduction of H258L via gene editing resulted in high resistance levels to all tested acaricides, with extreme LC50 values (>5000 mg a.i./L) for cyenopyrafen and cyetpyrafen, but lower resistance levels for pyflubumide and cyflumetofen. Together, these findings indicate that different mutations result in a different cross-resistance spectrum, probably also reflecting subtle differences in the binding mode of complex II acaricides.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , Acaricidas/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Mutación , Sitios de Unión , Ubiquinona/análogos & derivados , Resistencia a Medicamentos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Propionatos/farmacología
15.
Pest Manag Sci ; 79(1): 183-193, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36116012

RESUMEN

BACKGROUND: Afoxolaner is a novel representative of the isoxazolines, a class of ectoparasiticides which has been commercialized for the control of tick and flea infestations in dogs. In this study, the biological efficacy of afoxolaner against the two-spotted spider mite Tetranychus urticae was evaluated. Furthermore, as isoxazolines are known inhibitors of γ-aminobutyric acid-gated chloride channels (GABACls), the molecular mode of action of afoxolaner on T. urticae GABACls (TuRdls) was studied using functional expression in Xenopus oocytes followed by two-electrode voltage-clamp (TEVC) electrophysiology, and results were compared with inhibition by fluralaner, fipronil and endosulfan. To examine the influence of known GABACl resistance mutations, H301A, I305T and A350T substitutions in TuRdl1 and a S301A substitution in TuRdl2 were introduced. RESULTS: Bioasassays revealed excellent efficacy of afoxolaner against all developmental stages and no cross-resistance was found in a panel of strains resistant to most currently used acaricides. Laboratory selection over a period of 3 years did not result in resistance. TEVC revealed clear antagonistic activity of afoxolaner and fluralaner for all homomeric TuRdl1/2/3 channels. The introduction of single, double or triple mutations to TuRdl1 and TuRdl2 did not lower channel sensitivity. By contrast, both endosulfan and fipronil had minimal antagonistic activities against TuRdl1/2/3, and channels carrying single mutations, whereas the sensitivity of double and triple TuRdl1 mutants was significantly increased. CONCLUSIONS: Our results demonstrate that afoxolaner is a potent antagonist of GABACls of T. urticae and has a powerful mode of action to control spider mites. © 2022 Society of Chemical Industry.


Asunto(s)
Animales , Perros
16.
Pest Manag Sci ; 79(11): 4403-4413, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394630

RESUMEN

BACKGROUND: The acaricides cyflumetofen, cyenopyrafen and pyflubumide inhibit the mitochondrial electron transport chain at complex II [succinate dehydrogenase (SDH) complex]. A target site mutation H258Y was recently discovered in a resistant strain of the spider mite pest Tetranychus urticae. H258Y causes strong cross-resistance between cyenopyrafen and pyflubumide, but not cyflumetofen. In fungal pests, fitness costs associated with substitutions at the corresponding H258 position that confer resistance to fungicidal SDH inhibitors have not been uncovered. Here, we used H258 and Y258 near-isogenic lines of T. urticae to quantify potential pleiotropic fitness effects on mite physiology. RESULTS: The H258Y mutation was not associated with consistent significant changes of single generation life history traits and fertility life table parameters. In contrast, proportional Sanger sequencing and droplet digital polymerase chain reaction showed that the frequency of the resistant Y258 allele decreased when replicated 50:50 Y258:H258 experimentally evolving populations were maintained in an acaricide-free environment for approximately 12 generations. Using in vitro assays with mitochondrial extracts from resistant (Y258) and susceptible (H258) lines, we identified a significantly reduced SDH activity (48% lower activity) and a slightly enhanced combined complex I and III activity (18% higher activity) in the Y258 lines. CONCLUSION: Our findings suggest that the H258Y mutation is associated with a high fitness cost in the spider mite T. urticae. Importantly, while it is the most common approach, it is clear that only comparing life history traits and life table fecundity does not allow to reliably estimate fitness costs of target site mutations in natural pest populations. © 2023 Society of Chemical Industry.

17.
Insect Biochem Mol Biol ; 144: 103761, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35341907

RESUMEN

Succinate dehydrogenase (SDH) inhibitors such as cyflumetofen, cyenopyrafen and pyflubumide, are selective acaricides that control plant-feeding spider mite pests. Resistance development to SDH inhibitors has been investigated in a limited number of populations of the spider mite Tetranychus urticae and is associated with cytochrome P450 based detoxification and target-site mutations such as I260 T/V in subunit B and S56L in subunit C of SDH. Here, we report the discovery of a H258Y substitution in subunit B of SDH in a highly pyflubumide resistant population of T. urticae. As this highly conserved residue corresponds to one of the ubiquinone binding residues in fungi and bacteria, we hypothesized that H258Y could have a strong impact on SDH inhibitors toxicity. Marker assisted introgression and toxicity bioassays revealed that H258Y caused high cross resistance between cyenopyrafen and pyflubumide, but increased cyflumetofen toxicity. Resistance associated with H258Y was determined as dominant for cyenopyrafen, but recessive for pyflubumide. In vitro SDH assays with extracted H258 mitochondria showed that cyenopyrafen and the active metabolites of pyflubumide and cyflumetofen, interacted strongly with complex II. However, a clear shift in IC50s was observed for cyenopyrafen and the metabolite of pyflubumide when Y258 mitochondria were investigated. In contrast, the mutation slightly increased affinity of the cyflumetofen metabolite, likely explaining its increased toxicity for the mite lines carrying the substitution. Homology modeling and ligand docking further revealed that, although the three acaricides share a common binding motif in the Q-site of SDH, H258Y eliminated an important hydrogen bond required for cyenopyrafen and pyflubumide binding. In addition, the hydrogen bond between cyenopyrafen and Y117 in subunit D was also lost upon mutation. In contrast, cyflumetofen affinity was enhanced due to an additional hydrogen bond to W215 and hydrophobic interactions with the introduced Y258 in subunit B. Altogether, our findings not only highlight the importance of the highly conserved histidine residue in the binding of SDH inhibitors, but also reveal that a resistance mutation can provide both positive and negative cross-resistance within the same acaricide mode of action group.


Asunto(s)
Acaricidas , Tetranychidae , Acaricidas/metabolismo , Acaricidas/farmacología , Acrilonitrilo/análogos & derivados , Animales , Mutación , Propionatos , Pirazoles , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo
18.
Insect Biochem Mol Biol ; 142: 103725, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093501

RESUMEN

Helicoverpa armigera and Helicoverpa zea are highly polyphagous major agricultural pests with a global distribution. Their control is based on insecticides, however, new, effective, and environmentally friendly control tools are required to be developed and validated. In an effort to facilitate the development of advanced biotechnological tools in these species that will take advantage of new powerful molecular biology techniques like CRISPR/Cas9, we used available transcriptomic data and literature resources, in order to identify RNA polymerase II and III promoters active in RP-HzGUT-AW1(MG), a midgut derived cell line from Helicoverpa zea. Following functional analysis in insect cell lines, four RNA polymerase II promoters from the genes HaLabial, HaTsp-2A, HaPtx-I and HaCaudal were found to exhibit high transcriptional activity in vitro. The HaTsp-2A promoter did not exhibit any activity in the non-midgut derived cell lines Sf-9 and Hi-5 despite high sequence conservation among Lepidoptera, suggesting that it may function in a gut specific manner. Furthermore, considering the utility of RNA polymerase III U6 promoters in methodologies such as RNAi and CRISPR/Cas9, we identified and evaluated four different U6 promoters of H. armigera. In vitro experiments based on luciferase and GFP reporter assays, as well as in vivo experiments targeting an essential gene of Helicoverpa, indicate that these U6 promoters are functional and can be used to experimentally silence or knockout target genes through the expression of shRNAs and sgRNAs respectively. Taking our findings together, we provide a set of promoters useful for the genetic manipulation of Helicoverpa species, that can be used in various applications in the context of agricultural biotechnology.


Asunto(s)
Mariposas Nocturnas , ARN Polimerasa II , Animales , Biotecnología , Técnicas de Inactivación de Genes , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
19.
Insect Biochem Mol Biol ; 145: 103757, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301092

RESUMEN

The organotin acaricide fenbutatin oxide (FBO) - an inhibitor of mitochondrial ATP-synthase - has been one of the most extensively used acaricides for the control of spider mites, and is still in use today. Resistance against FBO has evolved in many regions around the world but only few studies have investigated the molecular and genetic mechanisms of resistance to organotin acaricides. Here, we found that FBO resistance is polygenic in two genetically distant, highly resistant strains of the spider mite Tetranychus urticae, MAR-AB and MR-VL. To identify the loci underlying FBO resistance, two independent bulked segregant analysis (BSA) based QTL mapping experiments, BSA MAR-AB and BSA MR-VL, were performed. Two QTLs on chromosome 1 were associated with FBO resistance in each mapping experiment. At the second QTL of BSA MAR-AB, several cytochrome P450 monooxygenase (CYP) genes were located, including CYP392E4, CYP392E6 and CYP392E11, the latter being overexpressed in MAR-AB. Synergism tests further implied a role for CYPs in FBO resistance. Subunit c of mitochondrial ATP-synthase was located near the first QTL of both mapping experiments and harbored a unique V89A mutation enriched in the resistant parents and selected BSA populations. Marker-assisted introgression into a susceptible strain demonstrated a moderate but significant effect of the V89A mutation on toxicity of organotin acaricides. The impact of the mutation on organotin inhibition of ATP synthase was also functionally confirmed by ATPase assays on mitochondrial preparations. To conclude, our findings suggest that FBO resistance in the spider mite T. urticae is a complex interplay between CYP-mediated detoxification and target-site resistance.


Asunto(s)
Acaricidas , Tetranychidae , Acaricidas/farmacología , Adenosina Trifosfato/farmacología , Animales , Sistema Enzimático del Citocromo P-450/genética , Compuestos Orgánicos de Estaño , Tetranychidae/genética
20.
Insect Biochem Mol Biol ; 151: 103830, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064128

RESUMEN

The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.


Asunto(s)
Mariposas Nocturnas , Transportadores de Anión Orgánico , Animales , Ecdisona/metabolismo , Filogenia , Larva , Spodoptera/genética , Spodoptera/metabolismo , Transportadores de Anión Orgánico/genética , Insectos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA