Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
AAPS J ; 25(6): 102, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891356

RESUMEN

A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.


Asunto(s)
Hepatocitos , Hígado , Humanos , Reproducibilidad de los Resultados , Tasa de Depuración Metabólica , Hígado/metabolismo , Hepatocitos/metabolismo , Modelos Biológicos , Farmacocinética
2.
Sci Rep ; 8(1): 8015, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789564

RESUMEN

Microphysiological systems (MPS), consisting of tissue constructs, biomaterials, and culture media, aim to recapitulate relevant organ functions in vitro. MPS components are housed in fluidic hardware with operational protocols, such as periodic complete media replacement. Such batch-like operations provide relevant nutrients and remove waste products but also reset cell-secreted mediators (e.g. cytokines, hormones) and potentially limit exposure to drugs (and metabolites). While each component plays an essential role for tissue functionality, MPS-specific nutrient needs are not yet well-characterized nor utilized to operate MPSs at more physiologically-relevant conditions. MPS-specific nutrient needs for gut (immortalized cancer cells), liver (human primary hepatocytes) and cardiac (iPSC-derived cardiomyocytes) MPSs were experimentally quantified. In a long-term study of the gut MPS (10 days), this knowledge was used to design operational protocols to maintain glucose and lactate at desired levels. This quasi-steady state operation was experimentally validated by monitoring glucose and lactate as well as MPS functionality. In a theoretical study, nutrient needs of an integrated multi-MPS platform (gut, liver, cardiac MPSs) were computationally simulated to identify long-term quasi-steady state operations. This integrative experimental and computational approach demonstrates the utilization of quantitative multi-scale characterization of MPSs and incorporating MPS-specific information to establish more physiologically-relevant experimental operations.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Metabolismo Energético/fisiología , Microtecnología/métodos , Especificidad de Órganos/fisiología , Integración de Sistemas , Fenómenos Bioquímicos , Células CACO-2 , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Simulación por Computador , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ecosistema , Glucosa/metabolismo , Células HT29 , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Intestinos/citología , Ácido Láctico/metabolismo , Hígado/citología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microtecnología/instrumentación , Miocitos Cardíacos/citología , Biología de Sistemas
4.
Sci Rep ; 8(1): 4530, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540740

RESUMEN

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.


Asunto(s)
Técnicas de Cocultivo/métodos , Diclofenaco/farmacocinética , Dispositivos Laboratorio en un Chip , Hígado/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Humanos , Procedimientos Analíticos en Microchip , Modelos Biológicos , Fenotipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA