Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Toxicol Pharmacol ; 23(1): 64-72, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21783738

RESUMEN

The abilities of the gasoline additives methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) to cause liver damage following oral administration, dosed alone or in combination with model hepatotoxins, were investigated in the rat. Inducibility of liver drug-metabolizing enzyme activities was also studied. Exposure to these ethers (10-20mmol/kg) for 3 days resulted in hepatomegaly (13-30%) and induction of cytochrome P450 (CYP) activity towards N-nitrosodimethylamine (NDMAD), 7-pentoxyresorufin (PROD), and 7-ethoxyresorufin (EROD). Immunoinhibition assays with monoclonal antibodies showed that the ethers were equipotent as inducers of CYP2E1 activity (2-fold increase) but not of CYP2B1, which was elevated up to 260-fold in TAME-treated rats but only by 20-fold in MTBE rats. A slight or no modifying effect was observed on the NADPH:quinone oxidoreductase (NQO1), glutathione S-transferase (GST), and UDP-glucuronosyltransferase (UGT) activities. Alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) were elevated in blood plasma after administration of the ethers. No dramatic enhancement of liver damage could be detected by plasma enzyme analysis (ALT, AST, alkaline phosphatase, γ-glutamyltransferase) following ether administration (13.5mmol/kg) to rats pretreated with mildly hepatotoxic dosages of ethanol, pyrazole, phenobarbital, acetaminophen (paracetamol), or 13-cis-retinoic acid (13-cis-RA or isotretinoin). Plasma triglycerides increased in TAME-treated rats (1.7-fold) and in all 13-cis-RA-treated groups (2.1-2.8-fold). The findings that MTBE and TAME exhibited a clear but differential inducing effect on two ether-metabolizing CYP forms (2E1 and 2B1) with no marked effect on phase II activities may reflect the importance of these pathways in vivo. The observation that only TAME by itself induced hypertriglyceridemia while acetaminophen- and 13-cis-RA-induced hypertriglyceridemia were aggravated by both ethers, points to differences in their effects on lipid metabolism. TAME was clearly a more potent CNS depressant than MTBE. There was no marked potentiation of drug/chemical-induced acute liver damage either by MTBE or TAME.

2.
J Clin Pharmacol ; 46(3): 353-72, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16490812

RESUMEN

Monoclonal antibodies are reagents par excellence for analyzing the role of individual cytochrome P450 isoforms in multifunctional biological activities catalyzed by cytochrome P450 enzymes. The precision and utility of the monoclonal antibodies have heretofore been applied primarily to studies of human drug metabolism. The unique and precise specificity and high inhibitory activity toward individual cytochrome P450s make the monoclonal antibodies extraordinary tools for identifying and quantifying the role of each P450 isoform in the metabolism of a drug or nondrug xenobiotic. The monoclonal antibodies identify drugs metabolized by individual, several, or polymorphic P450s. A comprehensive collection of monoclonal antibodies has been isolated to human P450s: 1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C family, 2C19, 2D6, 2E1, 3A4/5, and 2J2. The monoclonal antibodies can also be used for identifying drugs and/or metabolites useful as markers for in vivo phenotyping. Clinical identification of a patient's phenotype, coupled with precise knowledge of a drug's metabolism, should lead to a reduction of adverse drug reactions and improved drug therapeutics, thereby promoting advances in drug discovery.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Inactivación Metabólica/fisiología , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Alelos , Anticuerpos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/fisiología , Humanos , Inactivación Metabólica/genética , Fenotipo , Isoformas de Proteínas
3.
J Pharm Sci ; 99(2): 1063-77, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19593786

RESUMEN

To characterize the human cytochrome P450 (P450) forms involved in dimemorfan oxidation (DFO), human liver microsomes, and recombinant P450s were investigated. Liquid chromatography-mass spectral analysis suggested that metabolite (M)1 ([M + H](+) m/z at 272.200) and M2 ([M + H](+) m/z at 242.190) were d-3-hydroxymethyl-N-methylmorphinan and d-3-methylmorphinan, respectively. Kinetic analyses of microsomal DFO showed that the substrate concentration showing a half-maximal velocity (S(50)) of M1 formation was less than that of M2. Microsomal M1 and M2 formation activities correlated significantly with the CYP2D6 marker, dextromethorphan O-demethylation activity. The M2 formation activity was also correlated with the CYP3A4 marker, nifedipine oxidation activity. Microsomal M1 and M2 formation was most sensitive to the inhibition by a CYP2D6 inhibitor, paroxetine and a CYP3A4 inhibitor, ketoconazole, respectively. The immunoinhibition-defined P450 contributions indicated the participation of CYP2C9, CYP2C19, and CYP2D6 in the M1 formation and CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in the M2 formation. Among recombinant P450s, CYP2D6 had the highest intrinsic clearance with a K(m) value of 0.02 mM in forming M1. CYP2B6, CYP2C9, and CYP2C19 had the K(m) or S(50) values smaller than those (1 mM) of CYP2D6 and CYP3A4 in forming M2. These results indicated the participation of multiple P450 forms in DFO.


Asunto(s)
Antitusígenos/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Morfinanos/farmacocinética , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/farmacología , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/genética , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Masculino , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Oxidación-Reducción , Plásmidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Br J Clin Pharmacol ; 55(2): 175-81, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12580989

RESUMEN

AIMS: The objective of this study was to evaluate the potential uses of relative abundance, relative activity approaches and inhibitory monoclonal antibodies (mAbs) in the characterization of CYP enzymology in early drug discovery. METHODS: Intrinsic clearance estimates for the oxidation of ethoxyresorufin (a selective probe of CYP1A2 activity), tolbutamide (CYP2C9), S-mephenytoin (CYPC19), dextromethorphan (CYP2D6) and testosterone (CYP3A4) were used to determine relative activity factors (RAFs). CLint values were determined for the metabolism of 14 drugs in human liver microsomes (HLM) and for these major CYPs. The relative contribution of each individual CYP to the oxidation of each drug was then assessed using relative abundance and activity techniques in addition to inhibitory mAbs. RESULTS: Relative abundance and activity methods as well as inhibitory mAbs qualitatively assigned the same CYP isoform as predominantly responsible for the clearance of each drug by HLM. Metabolism catalysed by CYP1A2, 2C9, 2D6 and 3A4 was also predicted to be quantitatively similar using both abundance and activity techniques. However, the relative contribution of the polymorphic CYP2C19 appeared to be over-estimated approximately two-fold using recombinant CYP compared with that from the HLM and mAb approach. CONCLUSIONS: All three methods investigated in this study appear suitable for use in the characterization of the CYP metabolism of new chemical entities produced during early drug discovery.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/análisis , Diseño de Fármacos , Humanos , Fenotipo
5.
J Pharmacol Exp Ther ; 301(3): 1025-32, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12023534

RESUMEN

A panel of 15 recombinant cytochromes P450 expressed in human B-lymphoblastoid cells was used to study debrisoquine 4-hydroxylation. Both CYP2D6 and CYP1A1 carried out the reaction. The apparent K(m) (micromolar) and V(max) (picomoles per minute per picomole of P450) for CYP2D6 were 12.1 and 18.2 and for CYP1A1 were 23.1 and 15.2, respectively. CYP1A1 debrisoquine 4-hydroxylase was inhibited by the CYP1A1 inhibitor alpha-naphthoflavone and the CYP1A1 substrate 7-ethoxyresorufin. Additionally and surprisingly, this reaction was also inhibited by quinidine and quinine, with respective IC(50) values of 1.38 +/- 0.10 and 3.31 +/- 0.14 microM, compared with those for CYP2D6 debrisoquine 4-hydroxylase of 0.018 +/- 0.05 and 3.75 +/- 2.07 microM, respectively. Anti-CYP1A1 monoclonal antibody (mAb) 1-7-1 abolished CYP1A1 debrisoquine hydroxylase and anti-CYP2D6 mAb 50-1-3 eradicated CYP2D6 debrisoquine 4-hydroxylase. Three further CYP2D6-specific reactions were tested: dextromethorphan O-demethylation, bufuralol 1'-hydroxylation, and sparteine dehydrogenation. The CYP2D6 specificity, judged by the CYP2D6/CYP1A1 activity ratios was 18.5, 7.0, 6.0, and 1.6 for dextromethorphan, bufuralol, sparteine, and debrisoquine, respectively. Thus, debrisoquine is not a specific CYP2D6 substrate and quinidine is not a specific CYP2D6 inhibitor. These findings have significant implications for the conduct of in vitro drug metabolism inhibition studies and underscore the fallacy of "specific chemical inhibitors" of a supergene family of enzymes that have overlapping substrate specificities. The use of highly specific mAbs in such studies is mandated. It is unclear as yet whether these findings have implications for the relationship between CYP2D6 genotype and in vivo debrisoquine 4-hydroxylase activity.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Inhibidores del Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2D6/metabolismo , Debrisoquina/metabolismo , Inhibidores Enzimáticos/farmacología , Quinidina/farmacología , Quinina/farmacología , Adrenérgicos/química , Adrenérgicos/metabolismo , Antimaláricos/farmacología , Debrisoquina/química , Relación Dosis-Respuesta a Droga , Humanos , Hidroxilación/efectos de los fármacos , Microsomas/efectos de los fármacos , Microsomas/enzimología
6.
Eur J Clin Pharmacol ; 60(3): 173-82, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15054565

RESUMEN

OBJECTIVE: This in-vitro study aimed at an identification of cytochrome P(450) (CYP) enzymes catalysing the (S)- and (R)-hydroxylation of the widely used anticoagulant phenprocoumon (PPC) to its major, inactive metabolites. METHODS: Relevant catalysts were identified by kinetic, correlation and inhibition experiments using human liver microsomes and recombinant enzymes. RESULTS: Kinetics revealed (S)-7-hydroxylation as quantitatively most important. Biphasic Eadie-Hofstee plots indicated more than one catalyst for the 4'-, 6- and 7-hydroxylation of both enantiomers with mean K(m1) and K(m2) of 144.5+/-34.9 and 10.0+/-6.49 microM, respectively. PPC hydroxylation rates were significantly correlated with CYP2C9 and CYP3A4 activity and expression analysing 11 different CYP-specific probes. Complete inhibition of PPC hydroxylation was achieved by combined addition of the CYP3A4-specific inhibitor triacetyloleandomycin (TAO) and a monoclonal, inhibitory antibody (mAb) directed against CYP2C8, 9, 18 and 19, except for the (R)-4'-hydroxylation that was, however, inhibited by ~80% using TAO alone. (S)-PPC hydroxylation was reduced by approximately 2/3 and approximately 1/3 using mAb2C8-9-18-19 and TAO, respectively, but (R)-6- and 7-hydroxylation by approximately 50% each. Experiments with mAbs directed against single CYP2C enzymes clearly indicated CYP2C9 as a major catalyst of the 6- and 7-hydroxylation for both enantiomers. However, CYP2C8 was equally important regarding the (S)-4'-hydroxylation. Recombinant CYP2C8 and CYP2C9 were high-affinity catalysts (K(m) <5 microM), whereas CYP3A4 operated with low affinity (K(m) >100 microM). CONCLUSION: CYP2C9 and CYP3A4 are major catalysts of (S)- and (R)-PPC hydroxylation, while CYP2C8 partly catalysed the (S)-4'-hydroxylation. Increased vigilance is warranted when PPC treatment is combined with substrates, inhibitors, or inducers of these enzymes.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Fenprocumón/metabolismo , Anticuerpos Monoclonales/farmacología , Anticoagulantes/farmacología , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/genética , Biotransformación/efectos de los fármacos , Biotransformación/fisiología , Catálisis/efectos de los fármacos , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Quimioterapia Combinada , Inhibidores Enzimáticos/farmacología , Predicción , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Isomerismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Fenprocumón/química , Fenprocumón/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Troleandomicina/farmacología
7.
Mol Pharmacol ; 66(6): 1607-16, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15361551

RESUMEN

CYP2J2 is abundant in cardiomyocytes and is involved in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), which affect multiple cell functions. In this study, we investigated the effect of overexpression of CYP2J2 on cardiac L-type Ca2+ currents (ICa) in adult transgenic mice. Cardiac-specific overexpression of CYP2J2 was achieved using the alpha-myosin heavy chain promoter. ICa was recorded from isolated ventricular cardiomyocytes. Compared with the wild-type cardiomyocytes (n = 60), the density of ICa was significantly increased by 40 +/- 9% in the CYP2J2 transgenic cardiomyocytes (n = 71; P < 0.001). N-Methylsulfonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH), a specific inhibitor of EET biosynthesis, and clotrimazole, a cytochrome P450 inhibitor, significantly reduced ICa in both wild-type and transgenic cardiomyocytes; however, MS-PPOH inhibited ICa to a greater extent in the CYP2J2 transgenic cells (n = 10) than in the wild-type cells (n = 10; P < 0.01). Addition of 11,12-EET significantly restored ICa in MS-PPOH-treated cells. Intracellular dialysis with either of two inhibitory monoclonal antibodies against CYP2J2 significantly reduced ICa in both wild-type and transgenic mice. Membrane-permeable 8-bromo-cAMP and the beta-adrenergic agonist isoproterenol significantly reversed the monoclonal antibody-induced inhibition of ICa. In addition, the total protein level of the alpha1 subunit of the Cav1.2 L-type Ca2+ channel was not altered in CYP2J2 transgenic hearts, but the phosphorylated portion was markedly increased. In conclusion, overexpression of CYP2J2 increases ICa in CYP2J2 transgenic cardiomyocytes via a mechanism that involves cAMP-protein kinase A-dependent phosphorylation of the L-type Ca2+ channel.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Sistema Enzimático del Citocromo P-450/genética , Miocardio/enzimología , Oxigenasas/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Citocromo P-450 CYP2J2 , Corazón/fisiología , Humanos , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Fosforilación , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA