Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(15): 6085-6094, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014236

RESUMEN

Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Exposición por Inhalación , Pulmón , Neumonía , Animales , Ratones , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Neumonía/epidemiología , Aerosoles y Gotitas Respiratorias
2.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674544

RESUMEN

Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.


Asunto(s)
Adipocitos , Ácido Oléico , Humanos , Ratones , Animales , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Lipólisis , Adipogénesis , Diferenciación Celular , Ácidos Grasos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células 3T3-L1 , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
3.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34372238

RESUMEN

The measuring of nanoparticle toxicity faces an important limitation since it is based on metrics exposure, the concentration at which cells are exposed instead the true concentration inside the cells. In vitro studies of nanomaterials would benefit from the direct measuring of the true intracellular dose of nanoparticles. The objective of the present study was to state whether the intracellular detection of nanodiamonds is possible by measuring the refractive index. Based on optical diffraction tomography of treated live cells, the results show that unlabeled nanoparticles can be detected and localized inside cells. The results were confirmed by fluorescence measurements. Optical diffraction tomography paves the way to measuring the true intracellular concentrations and the localization of nanoparticles which will improve the dose-response paradigm of pharmacology and toxicology in the field of nanomaterials.


Asunto(s)
Nanodiamantes , Nanopartículas , Nanopartículas/toxicidad , Refractometría
4.
Int J Mol Sci ; 18(7)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726765

RESUMEN

Gastrointestinal epithelium is the unique route for nutrients and for many pharmaceuticals to enter the body. The present study aimed to analyze precisely whether co-culture of two colon cancer cell lines, mucus-producing cells HT29-MTX and enterocyte-like Caco-2 cells, ameliorate differentiation into an in vitro intestinal barrier model and the signaling pathways involved. Differentiated Caco-2 cells gene datasets were compared first to intestinal or cancer phenotypes and second to signaling pathway gene datasets. Experimental validations were performed in real-time experiments, immunochemistry, and gene expression analyses on Caco-2 versus co-cultures of Caco-2 and HT29-MTX (10%) cells. Partial maintenance of cancer-cell phenotype in differentiated Caco-2 cells was confirmed and fatty acids merged as potential regulators of cancer signaling pathways. HT29-MTX cells induced morphological changes in Caco-2 cells, slightly increased their proliferation rate and profoundly modified gene transcription of phenotype markers, fatty acid receptors, intracellular transporters, and lipid droplet components as well as functional responses to oleic acid. In vitro, enterocyte phenotype was rescued partially by co-culture of cancer cells with goblet cells and completed through oleic acid interaction with signaling pathways dysregulated in cancer cells.


Asunto(s)
Neoplasias del Colon/metabolismo , Enterocitos/metabolismo , Ácido Oléico/metabolismo , Fenotipo , Células CACO-2 , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Transcripción Genética
5.
J Physiol ; 594(23): 6969-6985, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27641234

RESUMEN

KEY POINTS: Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE-/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE-/- mice. ABSTRACT: Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 µmol mg-1 ; P < 0.01) and inflammation (interleukin-1ß, 226.8 ± 27.1 vs. 182.5 ± 21.5 pg mg-1 ; P < 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise.


Asunto(s)
Encéfalo/patología , Dieta Alta en Grasa , Condicionamiento Físico Animal , Envejecimiento/fisiología , Animales , Aorta/diagnóstico por imagen , Aorta/metabolismo , Apolipoproteínas E/genética , Biomarcadores/sangre , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Catalasa/metabolismo , Colesterol/sangre , Femenino , Glutatión Peroxidasa/metabolismo , Inflamación/sangre , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Imagen por Resonancia Magnética , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nitratos/metabolismo , Nitritos/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Nutr ; 145(8): 1770-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26136586

RESUMEN

BACKGROUND: Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. OBJECTIVE: We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. METHODS: Female Swiss mice were gavaged with 150 µL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. RESULTS: In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 µg/mL vs. 90 µg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 µg/mL vs. 44 µg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 µg/mL vs. 35 µg/mL; P < 0.01) and NEFAs (20 µg/mL vs. 32 µg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. CONCLUSIONS: Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/farmacología , Lipólisis/efectos de los fármacos , Leche/química , Animales , Emulsionantes , Femenino , Regulación de la Expresión Génica , Intestino Delgado/metabolismo , Lecitinas , Lípidos/química , Ratones , Periodo Posprandial
7.
Br J Nutr ; 113(12): 1862-75, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25990651

RESUMEN

We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Inositol/administración & dosificación , Inositol/metabolismo , Adipoquinas/sangre , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Suplementos Dietéticos , Ácido Graso Sintasas/metabolismo , Hiperglucemia/metabolismo , Inositol/análisis , Inositol/deficiencia , Inositol/orina , Resistencia a la Insulina , Riñón/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control
8.
Sci Technol Adv Mater ; 16(4): 044601, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877819

RESUMEN

Carbon fluoroxide (CFO) nanoparticles (NPs) produced from silicon carbide wafers are used as both fluorescent probes and sonosensitizers for theranostic application. In vitro cell tests were carried out to investigate the feasibility of ultrasound-based therapy with the use of the CFO NPs. The NPs that penetrated inside the cells were shown to provoke cell destruction after application of an ultrasound treatment. No significant toxic effect was observed when the cells were treated with NP concentrations up to 0.5 mg ml-1 without applying ultrasound treatment. The obtained results open a new way toward cancer therapy strategies.

10.
Nutr Cancer ; 66(4): 645-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24738610

RESUMEN

Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, a hormone excessively produced during obesity, is suggested to be involved in breast cancer. The aim of the study was to investigate procarcinogenic potential of leptin by evaluating influence of leptin on cell proliferation, cell cycle, apoptosis, and signaling on numerous breast cells lines, including 184B5 normal cells, MCF10A fibrocystic cells and MCF-7, MDA-MB-231, and T47D cancer cells. Expressions of leptin and Ob-R were analyzed using qRT-PCR and immunohistochemistry, proliferation using fluorimetric resazurin reduction test and xCELLigence system, apoptosis and cell cycle by flow cytometry, and effect of leptin on different signalling pathways using qRT-PCR and Western blot. Cells were exposed to increasing concentrations of leptin. All cell lines expressed mRNA and protein of leptin and Ob-R. Leptin stimulated proliferation of all cell lines except for 184B5 and MDA-MB-231 cells. Leptin inhibited apoptosis but didn't alter proportion of cells within cell cycle in MCF7 cells. Leptin induced overexpression of leptin, Ob-R, estrogen receptor, and aromatase mRNA in MCF-7 and T47D cells. Autoregulation induced by leptin, relationship with estrogen pathway, and proliferative and antiapoptic activity in breast cancer cells may explain that obesity-associated hyperleptinemia may be a breast cancer risk factor.


Asunto(s)
Neoplasias de la Mama/sangre , Proliferación Celular/efectos de los fármacos , Leptina/sangre , Obesidad/sangre , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/etiología , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Femenino , Enfermedad Fibroquística de la Mama/sangre , Enfermedad Fibroquística de la Mama/etiología , Humanos , Inmunohistoquímica , Leptina/genética , Células MCF-7 , Obesidad/complicaciones , Receptores de Leptina/sangre , Receptores de Leptina/genética , Transducción de Señal/efectos de los fármacos
11.
Br J Nutr ; 112(4): 520-35, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24932525

RESUMEN

Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Grasas de la Dieta/uso terapéutico , Alimentos Funcionales , Leche , Obesidad/fisiopatología , Paniculitis/prevención & control , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Crianza de Animales Domésticos , Animales , Productos Lácteos/efectos adversos , Productos Lácteos/análisis , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/análisis , Grasas de la Dieta/metabolismo , Femenino , Alimentos Funcionales/análisis , Hipertrigliceridemia/etiología , Hipertrigliceridemia/prevención & control , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Lactancia , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Leche/efectos adversos , Leche/química , Leche/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología , Paniculitis/etiología , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Poaceae/química , Poaceae/crecimiento & desarrollo , Distribución Aleatoria
12.
Int J Hyg Environ Health ; 260: 114391, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781750

RESUMEN

The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.


Asunto(s)
Bacterias , Ciudades , Monitoreo del Ambiente , Microbiota , Lluvia , Microbiología del Agua , Humanos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Monitoreo del Ambiente/métodos , ARN Ribosómico 16S/genética , Heces/microbiología
13.
Kidney Int ; 83(5): 878-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23423258

RESUMEN

Chronic kidney disease (CKD) is frequently associated with protein-energy wasting, a recognized strong predictive factor of mortality. Zinc α2-glycoprotein (ZAG) is a new adipokine involved in body weight control through its lipid-mobilizing activity. Here we tested whether the uremic environment in CKD could alter ZAG production by white adipose tissue and contribute to CKD-associated metabolic disturbances. Compared with normal plasma, uremic plasma induced a significant increase in ZAG synthesis (124%), was associated with a significant increase in basal lipolysis (31%), and significantly blunted lipogenesis (-53%) in 3T3-L1 adipocytes in vitro. In 5/6 nephrectomized rats and mice in vivo, there was a significant decrease in white adipose tissue accretion (-44% and -43%, respectively) and a significantly higher white adipose tissue content of ZAG protein than in sham-operated, pair-fed control animals (498% and 106%, respectively). Subcutaneous white adipose tissue biopsies from patients with end-stage renal disease exhibited a higher content of ZAG (573%) than age-matched controls. Thus, the ZAG content is increased in white adipose tissue from patients or animal models with CKD. Overproduction of ZAG in CKD could be a major contributor to metabolic disturbances associated with CKD.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Proteínas Portadoras/sangre , Glicoproteínas/sangre , Insuficiencia Renal Crónica/sangre , Células 3T3-L1 , Adipoquinas , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Fallo Renal Crónico/sangre , Lipogénesis , Lipólisis , Masculino , Ratones , Persona de Mediana Edad , Diálisis Peritoneal , Ratas , Ratas Wistar , Diálisis Renal , Insuficiencia Renal Crónica/terapia , Regulación hacia Arriba , Uremia/sangre
14.
Eur J Cell Biol ; 102(2): 151303, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907024

RESUMEN

Rheumatoid synovitis is infiltrated by immune cells that interact with synoviocytes, leading to the pannus formation. Inflammation or cell interaction effects are mainly evaluated with cytokine production, cell proliferation or migration. Few studies interest on cell morphology. Here, the purpose was to deepen some morphological changes of synoviocytes or immune cells under inflammatory conditions. Inflammatory cytokines, IL-17 and TNF that are largely involved in RA pathogenesis, induced a change in synoviocyte morphology, inducing a retracted cell with higher number of pseudopodia. Several morphological parameters decreased in inflammatory conditions: cell confluence, area and motility speed. The same impact on cell morphology was observed in co-culture of synoviocytes and immune cells in inflammatory/non-inflammatory conditions or with cell activation (miming the in vivo situation), affecting both cell types: synoviocytes were retracted and inversely immune cells proliferated, indicating that cell activation induced a morphological change of cells. In contrast, with RA but not control synoviocytes, cell interactions were not sufficient to affect PBMC and synoviocyte morphology. The morphological effect came only from the inflammatory environment. These findings reveal that the inflammatory environment or cell interactions induced massive changes in control synoviocytes, with cell retraction and increase of pseudopodia number, leading to better interactions with other cells. Except in the case of RA, the inflammatory environment was absolutely required for such changes.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Sinoviocitos/patología , Citocinas/farmacología , Leucocitos Mononucleares/patología , Artritis Reumatoide/patología , Proliferación Celular , Células Cultivadas , Citoesqueleto , Fibroblastos/patología , Comunicación Celular
15.
Environ Sci Process Impacts ; 25(3): 382-388, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36789908

RESUMEN

Secondary organic aerosols (SOAs) have emerged recently as a major component of fine particulate matter. Cell culture studies revealed a role for SOAs in cell oxidative stress, toxicity and inflammation and only a few studies investigated short-term SOA exposure in animal models. Here, mice were chronically exposed to naphthalene-derived SOAs for one and two months. Weight monitoring indicated a marked mass loss, especially in females, following chronic exposure to SOAs. Significantly, a cytokine antibody microarray approach revealed SOA-induced abnormal lung inflammation similar to that seen in cigarette smoke-induced chronic obstructive pulmonary disease (COPD). This in vivo study testifies to the pathogenic role of sub-chronic SOA exposure on human health.


Asunto(s)
Neumonía , Aerosoles y Gotitas Respiratorias , Femenino , Ratones , Humanos , Animales , Neumonía/inducido químicamente , Material Particulado/toxicidad , Pérdida de Peso , Estrés Oxidativo
16.
Discov Nano ; 18(1): 111, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682347

RESUMEN

Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.

17.
Am J Physiol Endocrinol Metab ; 302(3): E374-86, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22094473

RESUMEN

Low-grade inflammation observed in obesity is a risk factor for cardiovascular disease. Recent studies revealed that this would be linked to gut-derived endotoxemia during fat digestion in high-fat diets, but nothing is known about the effect of lipid composition. The study was designed to test the impact of oil composition of high-fat diets on endotoxin metabolism and inflammation in mice. C57/Bl6 mice were fed for 8 wk with chow or isocaloric isolipidic diets enriched with oils differing in fatty acid composition: milk fat, palm oil, rapeseed oil, or sunflower oil. In vitro, adipocytes (3T3-L1) were stimulated or not with lipopolysaccharide (LPS; endotoxin) and incubated with different fatty acids. In mice, the palm group presented the highest level of IL-6 in plasma (P < 0.01) together with the highest expression in adipose tissue of IL-1ß and of LPS-sensing TLR4 and CD14 (P < 0.05). The higher inflammation in the palm group was correlated with a greater ratio of LPS-binding protein (LBP)/sCD14 in plasma (P < 0.05). The rapeseed group resulted in higher sCD14 than the palm group, which was associated with lower inflammation in both plasma and adipose tissue despite higher plasma endotoxemia. Taken together, our results reveal that the palm oil-based diet resulted in the most active transport of LPS toward tissues via high LBP and low sCD14 and the greatest inflammatory outcomes. In contrast, a rapeseed oil-based diet seemed to result in an endotoxin metabolism driven toward less inflammatory pathways. This shows that dietary fat composition can contribute to modulate the onset of low-grade inflammation through the quality of endotoxin receptors.


Asunto(s)
Tejido Adiposo Blanco/inmunología , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/inmunología , Receptores Inmunológicos/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteínas Portadoras/sangre , Citocinas/sangre , Ácidos Grasos Monoinsaturados , Ácidos Grasos no Esterificados/efectos adversos , Ácidos Grasos no Esterificados/sangre , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/aislamiento & purificación , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Receptores de Lipopolisacáridos/sangre , Receptores de Lipopolisacáridos/metabolismo , Masculino , Glicoproteínas de Membrana/sangre , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/microbiología , Ratones , Ratones Endogámicos C57BL , Aceite de Palma , Aceites de Plantas/efectos adversos , Distribución Aleatoria , Aceite de Brassica napus , Aceite de Girasol , Receptor Toll-Like 4/metabolismo
18.
Adipocyte ; 11(1): 510-528, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946137

RESUMEN

Metabolic disorders related to obesity are largely dependent on adipose tissue hypertrophy, which involves adipocyte hypertrophy and increased adipogenesis. Adiposize is regulated by lipid accumulation as a result of increased lipogenesis (mainly lipid uptake in mature adipocytes) and reduced lipolysis. Using realtime 2D cell culture analyses of lipid uptake, we show (1) that high glucose concentration (4.5 g/L) was required to accumulate oleic acid increasing lipid droplet size until unilocularization similar to mature adipocytes in few days, (2) oleic acid reduced Peroxisome-Proliferator Activated Receptor Gamma (PPARG) gene transcription and (3) insulin counteracted oleic acid-induced increase of lipid droplet size. Although the lipolytic activity observed in high versus low glucose (1 g/L) conditions was not altered, insulin was found to inhibit oleic acid induced gene transcription required for lipid storage such as Cell Death Inducing DFFA Like Effectors (CIDEC) and G0S2 (G0 switch gene S2), possibly through PPARA activity. Although this signalling pathway requires more detailed investigation, the results point out the differential mechanisms involved in the pro-adipogenic effect of insulin in absence versus its protective effect on adiposity in presence of oleic acid uptake.Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside; AMPK, AMP-Activated protein kinase, ASCs, adipose stem cell; ATGL, adipose triglyceride lipase; BSA, Bovine serum albumin; CEBPA, CCAAT enhancer binding protein alpha; CIDEs, Cell Death Inducing DFFA Like Effectors; dA, differentiated adipocyte; DMEM, Dulbecco's Modified Eagle's Medium; FABPs, Fatty Acid Binding Proteins; FAT/CD36, Fatty acid translocase; FCS, Foetal calf serum; FN1, fibronectin 1; FFA, free fatty acid; G0S2, G0 switch gene S2; GLUTs, Glucose transporters; GPR120, G protein-coupled receptor 120; HG, high glucose; HSL, hormone sensitive lipase; INSR, insulin receptor; LG, low glucose; OA, oleic acid; PBS, Phosphate buffer saline; PPARs, Peroxisome-Proliferator Activated Receptors; PKA, Protein kinase cyclic AMP-dependent; PKG, Protein kinase cyclic GMP dependent; PTGS2, cytochrome oxidase 2; RTCA, realtime cell analysis; TG, triglyceride.


Asunto(s)
Ácidos Grasos , Insulina , Adipocitos/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Hipertrofia/metabolismo , Insulina/metabolismo , Lipólisis , Obesidad/metabolismo , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Proteínas Quinasas/metabolismo
19.
Cancer Gene Ther ; 29(10): 1429-1438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35379907

RESUMEN

Cell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration. Here, we show that loss of ERRα leads to abnormal accumulation of actin filaments that is associated with an increased level of inactive form of the actin-depolymerising factor cofilin. We further show that ERRα depletion decreases cell adhesion and results in defective FA formation and turnover. Interestingly, specific inhibition of the RhoA-ROCK-LIMK-cofilin pathway rescues the actin polymerisation defects resulting from ERRα silencing, but not cell adhesion. Instead, we found that MAP4K4 is a direct target of ERRα and down-regulation of its activity rescues cell adhesion and FA formation in the ERRα-depleted cells. Altogether, our results highlight a crucial role of ERRα in coordinating the dynamic of actin network and FAs through the independent regulation of the RhoA and MAP4K4 pathways.


Asunto(s)
Actinas , Adhesiones Focales , Factores Despolimerizantes de la Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimiento Celular/fisiología , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
20.
Nanoscale Res Lett ; 17(1): 127, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562892

RESUMEN

Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from ß-alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA