Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772379

RESUMEN

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Asunto(s)
Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Secuenciación del Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Canales de Potasio Shal/genética
2.
Am J Hum Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013458

RESUMEN

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.

3.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071997

RESUMEN

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Femenino , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Humanos
4.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37580113

RESUMEN

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Humanos , Niño , Cuerpo Calloso , Facies , Mutación/genética , Fenotipo , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Síndrome , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
5.
J Med Genet ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937076

RESUMEN

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

6.
Hum Genet ; 143(6): 761-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38787418

RESUMEN

Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño
7.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432067

RESUMEN

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Asunto(s)
Anomalías Múltiples , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Histona Demetilasas , Proteínas de Neoplasias , Enfermedades Vestibulares , Humanos , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/diagnóstico , Niño , Cara/anomalías , Femenino , Masculino , Preescolar , Anomalías Múltiples/genética , Adolescente , Histona Demetilasas/genética , Proteínas de Neoplasias/genética , Enfermedades Hematológicas/genética , Proteínas de Unión al ADN/genética , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Idiopática/terapia , Púrpura Trombocitopénica Idiopática/diagnóstico , Lactante , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Trombocitopenia/etiología , Trombocitopenia/terapia , Anemia Hemolítica Autoinmune/genética , Anemia Hemolítica Autoinmune/diagnóstico , Anemia Hemolítica Autoinmune/terapia , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/diagnóstico , Rituximab/uso terapéutico , Mutación , Citopenia
8.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740550

RESUMEN

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Masculino , Femenino , Niño , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crecimiento , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Síndrome , Índice de Masa Corporal , Estatura/genética
9.
Prenat Diagn ; 44(1): 3-14, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161284

RESUMEN

OBJECTIVE: This study involved very early post-mortem (PM) examination of human fetal anatomy at 8 weeks of gestation (WG) using whole-body multimodal micro-imaging: micro-CT and high-field MRI (HF-MRI). We discuss the potential place of this imaging in early first-trimester virtual autopsy. METHODS: We performed micro-CT after different contrast-bath protocols including diffusible iodine-based contrast-enhanced (dice) and HF-MRI with a 9.4 T machine with qualitative and quantitative evaluation and obtained histological sections. RESULTS: Nine fetuses were included: the crown-rump length was 10-24 mm and corresponded to 7 and 9 WG according to the Robinson formula. The Carnegie stages were 17-21. Dice micro-CT and HF-MRI presented high signal to noise ratio, >5, according to the Rose criterion, and for allowed anatomical phenotyping in these specimens. Imaging did not alter the histology, allowing immunostaining and pathological examination. CONCLUSION: PM non-destructive whole-body multimodal micro-imaging: dice micro-CT and HF-MRI allows for PM human fetal anatomy study as early as 8 WG. It paves the way to virtual autopsy in the very early first trimester. Obtaining a precision phenotype, even regarding miscarriage products, allows a reverse phenotyping to select variants of interest in genome-wide analysis, offering potential genetic counseling for bereaved parents.


Asunto(s)
Feto , Imagen por Resonancia Magnética , Embarazo , Femenino , Humanos , Microtomografía por Rayos X/métodos , Feto/diagnóstico por imagen , Edad Gestacional , Autopsia/métodos , Imagen por Resonancia Magnética/métodos
10.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586840

RESUMEN

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Estudios Retrospectivos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38595321

RESUMEN

BACKGROUND: Data on dermatological manifestations of Costello syndrome (CS) remain heterogeneous and lack in validated description. OBJECTIVES: To describe the dermatological manifestations of CS; compare them with the literature findings; assess those discriminating CS from other RASopathies, including cardiofaciocutaneous syndrome (CFCS) and the main types of Noonan syndrome (NS); and test for dermatological phenotype-genotype correlations. METHODS: We performed a 10-year, large, prospective, multicentric, collaborative dermatological and genetic study. RESULTS: Thirty-one patients were enrolled. Hair abnormalities were ubiquitous, including wavy or curly hair and excessive eyebrows, respectively in 68% and 56%. Acral excessive skin (AES), papillomas and keratotic papules (PKP), acanthosis nigricans (AN), palmoplantar hyperkeratosis (PPHK) and 'cobblestone' papillomatous papules of the upper lip (CPPUL), were noted respectively in 84%, 61%, 65%, 55% and 32%. Excessive eyebrows, PKP, AN, CCPUL and AES best differentiated CS from CFCS and NS. Multiple melanocytic naevi (>50) may constitute a new marker of attenuated CS associated with intragenic duplication in HRAS. Oral acitretin may be highly beneficial for therapeutic management of PPHK. No significant dermatological phenotype-genotype correlation was determined between patients with and without HRAS c.34G>A (p.G12S). CONCLUSIONS AND RELEVANCE: This validated phenotypic characterization of a large number of patients with CS will allow future researchers to make a positive diagnosis, and to differentiate CS from CFCS and NS.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38421120

RESUMEN

Pathogenic variants in DDX3X are associated with neurodevelopmental disorders. Communication impairments are commonly reported, yet specific speech and language diagnoses have not been delineated, preventing prognostic counseling and targeted therapies. Here, we characterized speech and language in 38 female individuals, aged 1.69-24.34 years, with pathogenic and likely pathogenic DDX3X variants (missense, n = 13; nonsense, n = 12; frameshift, n = 7; splice site, n = 3; synonymous, n = 2; deletion, n = 1). Standardized speech, language, motor, social, and adaptive behavior assessments were administered. All participants had gross motor deficits in infancy (34/34), and fine motor deficits were common throughout childhood (94%; 32/34). Intellectual disability was reported in 86% (24/28) of participants over 4 years of age. Expressive, receptive, and social communication skills were, on average, severely impaired. However, receptive language was significantly stronger than expressive language ability. Over half of the assessed participants were minimally verbal (66%; 22/33; range = 2 years 2 months-24 years 4 months; mean = 8 years; SD = 6 years) and augmented speech with sign language, gestures, or digital devices. A quarter of the cohort had childhood apraxia of speech (25%; 9/36). Despite speech and language impairments, social motivation was a relevant strength. Many participants used augmentative and alternative communication (AAC), underscoring the need for early, tailored, and comprehensive AAC intervention.

13.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
14.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137615

RESUMEN

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Humanos , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Estudios Prospectivos
15.
Am J Hum Genet ; 105(4): 854-868, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585109

RESUMEN

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).


Asunto(s)
Axones/patología , Cadherinas/genética , Cuerpo Calloso/patología , Ojo/patología , Genitales/patología , Cardiopatías Congénitas/genética , Trastornos del Neurodesarrollo/genética , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Trastornos del Neurodesarrollo/patología
16.
Genet Med ; 24(6): 1316-1327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35311657

RESUMEN

PURPOSE: Retrospective interpretation of sequenced data in light of the current literature is a major concern of the field. Such reinterpretation is manual and both human resources and variable operating procedures are the main bottlenecks. METHODS: Genome Alert! method automatically reports changes with potential clinical significance in variant classification between releases of the ClinVar database. Using ClinVar submissions across time, this method assigns validity category to gene-disease associations. RESULTS: Between July 2017 and December 2019, the retrospective analysis of ClinVar submissions revealed a monthly median of 1247 changes in variant classification with potential clinical significance and 23 new gene-disease associations. Re-examination of 4929 targeted sequencing files highlighted 45 changes in variant classification, and of these classifications, 89% were expert validated, leading to 4 additional diagnoses. Genome Alert! gene-disease association catalog provided 75 high-confidence associations not available in the OMIM morbid list; of which, 20% became available in OMIM morbid list For more than 356 negative exome sequencing data that were reannotated for variants in these 75 genes, this elective approach led to a new diagnosis. CONCLUSION: Genome Alert! (https://genomealert.univ-grenoble-alpes.fr/) enables systematic and reproducible reinterpretation of acquired sequencing data in a clinical routine with limited human resource effect.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Variación Genética/genética , Genoma Humano/genética , Genómica , Humanos , Fenotipo , Estudios Retrospectivos
17.
Genet Med ; 24(5): 1096-1107, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35063350

RESUMEN

PURPOSE: Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS: We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS: We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION: We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteína Quinasa CDC2/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/genética , Fenotipo
18.
Genet Med ; 24(4): 905-914, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027293

RESUMEN

PURPOSE: Gabriele-de Vries syndrome (GADEVS) is a rare genetic disorder characterized by developmental delay and/or intellectual disability, hypotonia, feeding difficulties, and distinct facial features. To refine the phenotype and to better understand the molecular basis of the syndrome, we analyzed clinical data and performed genome-wide DNA methylation analysis of a series of individuals carrying a YY1 variant. METHODS: Clinical data were collected for 13 individuals not yet reported through an international call for collaboration. DNA was collected for 11 of these individuals and 2 previously reported individuals in an attempt to delineate a specific DNA methylation signature in GADEVS. RESULTS: Phenotype in most individuals overlapped with the previously described features. We described 1 individual with atypical phenotype, heterozygous for a missense variant in a domain usually not involved in individuals with YY1 pathogenic missense variations. We also described a specific peripheral blood DNA methylation profile associated with YY1 variants. CONCLUSION: We reported a distinct DNA methylation episignature in GADEVS. We expanded the clinical profile of GADEVS to include thin/sparse hair and cryptorchidism. We also highlighted the utility of DNA methylation episignature analysis for classification of variants of unknown clinical significance.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Metilación de ADN/genética , Genoma , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
19.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833929

RESUMEN

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Proteínas Represoras , Anomalías Dentarias , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Facies , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Represoras/genética , Anomalías Dentarias/diagnóstico , Factores de Transcripción/genética
20.
Am J Med Genet A ; 188(7): 2036-2047, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445792

RESUMEN

Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.


Asunto(s)
Anomalías del Ojo , Lipomatosis , Síndromes Neurocutáneos , Agenesia del Cuerpo Calloso , Labio Leporino , Coloboma , Anomalías Craneofaciales , Diagnóstico Diferencial , Oído Externo/anomalías , Anomalías del Ojo/genética , Oftalmopatías , Cara/anomalías , Humanos , Lipoma , Lipomatosis/genética , Pólipos Nasales , Síndromes Neurocutáneos/genética , Anomalías del Sistema Respiratorio , Enfermedades de la Piel , Columna Vertebral/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA