Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Cell ; 24(2): 566-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22374392

RESUMEN

Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Núcleo Celular/metabolismo , Fototropismo , Fitocromo A/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Luz , Proteínas de la Membrana , Mutación , Fosfoproteínas/metabolismo , Fitocromo/metabolismo , Fitocromo A/genética , Plantones/fisiología , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 4(8): e1000143, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18670649

RESUMEN

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Transporte Activo de Núcleo Celular/efectos de la radiación , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/química , Núcleo Celular/genética , Luz , Datos de Secuencia Molecular , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fitocromo/química , Fitocromo/genética , Fitocromo A/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Curr Opin Plant Biol ; 9(5): 509-14, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16979932

RESUMEN

Ambient light conditions trigger both developmental transitions, such as the induction of flowering, and a suite of adaptive responses, exemplified by the shade-avoidance syndrome. These responses are initiated by three families of photoreceptors that are conserved in all higher plants: the phototropins, cryptochromes and phytochromes (phyA--phyE, cry1--cry3, phot1 and phot2 in Arabidopsis). Molecular genetic studies performed mainly in Arabidopsis indicate that photon capture by these light sensors usually initiates rapid changes in the gene expression profile, leading to plant adaptation to their environment. Interestingly, numerous transcription factors are early targets of light regulation, both at the transcriptional and post-transcriptional levels.


Asunto(s)
Arabidopsis/efectos de la radiación , Núcleo Celular/fisiología , Luz , Plantones/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fototropismo/fisiología , Fitocromo/metabolismo , Plantones/crecimiento & desarrollo
4.
Phytochemistry ; 66(3): 267-76, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15680983

RESUMEN

The process of signal integration, which contributes to the regulation of multiple cellular activities, can be described in a digital language by a set of connected digital operations. In this article we delineate the basic concepts of cell signalling in the context of a logical description of information processing. Newly described instances of signal integration in plants are given as examples. The different advantages, limitations and predictive aspects of the digital modeling of signal transduction networks, as well as the minimal architecture of a computer database for plant signalling networks are discussed.


Asunto(s)
Biología Computacional , Bases de Datos Factuales , Modelos Biológicos , Plantas/metabolismo , Transducción de Señal
5.
PLoS One ; 3(7): e2699, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-18628957

RESUMEN

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/fisiología , Fitocromo/química , Alelos , Clonación Molecular , ADN Complementario/metabolismo , Epistasis Genética , Prueba de Complementación Genética , Luz , Modelos Biológicos , Mutación , Nucleósido-Difosfato Quinasa/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal
6.
Plant J ; 31(1): 87-95, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12100485

RESUMEN

The interaction of phytochrome signalling with the SA signal transduction pathway has been investigated in Arabidopsis using single and multiple mutants affected in light perception (phyA and phyB deficient) and light-signal processing (psi2, phytochrome signalling). The induction of PR1 by SA and functional analogues has been found to strictly correlate with the activity of the signalling pathway controlled by both phyA and phyB photoreceptors. In darkness as well as dim light, and independently of a carbohydrate source, SA-induced PR gene expression as well as the hypersensitive response to pathogens (HR) are strongly reduced. Moreover, the initiation of HR also exhibits a strict dependence upon both the presence and the amplitude of a phytochrome-elicited signal. The growth of an incompatible strain of bacterial a pathogen (Pseudomonas syringae pv. tomato) was enhanced in phyA-phyB and decreased in psi2 mutants. While functional chloroplasts were found necessary for the development of an HR, the induction of PRs was strictly dependent on light, but independent of functional chloroplasts. Taken together, these data demonstrate that the light-induced signalling pathway interacts with the pathogen/SA-mediated signal transduction route. These results are summarized in a formalism that allows qualitative computer simulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Células Fotorreceptoras , Fitocromo/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Genes de Plantas , Luz , Mutación , Fitocromo/genética , Fitocromo A , Fitocromo B , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas/patogenicidad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA