Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 21(15): 3449-60, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22589245

RESUMEN

Duchenne and Becker muscular dystrophies (DMD and BMD) are muscle-wasting diseases caused by mutations in the DMD gene-encoding dystrophin. Usually, out-of-frame deletions give rise to DMD, whereas in-frame deletions result in BMD. BMD patients exhibit a less severe disease because an abnormal but functional dystrophin is produced. This is the rationale for attempts to correct the reading frame by using an exon-skipping strategy. In order to apply this approach to a larger number of patients, a multi-exon skipping strategy of exons 45-55 has been proposed, because it should correct the mRNA reading frame in almost 75% of DMD patients with a deletion. The resulting dystrophin lacks part of the binding site for the neuronal nitric oxide synthase (nNOSµ), which normally binds to spectrin-like repeats 16 and 17 of the dystrophin. Since these domains are encoded by exons 42-45, we investigated the nNOSµ status in muscle biopsies from 12 BMD patients carrying spontaneous deletions spaning exons 45-55. We found a wide spectrum of nNOSµ expression and localization. The strictly cytosolic mislocalization of nNOSµ was associated with the more severe phenotypes. Cytosolic NO production correlated with both hypernitrosylation of the sarcoplasmic reticulum calcium-release-channel ryanodine receptor type-1 (RyR1) and release of calstabin-1, a central hub of Ca(2+) signaling and contraction in muscle. Finally, this study shows that the terminal truncation of the nNOS-binding domain in the 'therapeutic' del45-55 dystrophin is not innocuous, since it can perturb the nNOS-dependent stability of the RyR1/calstabin-1 complex.


Asunto(s)
Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Óxido Nítrico Sintasa de Tipo I/análisis , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adolescente , Adulto , Niño , Preescolar , Distrofina/genética , Exones , Eliminación de Gen , Humanos , Persona de Mediana Edad , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Eliminación de Secuencia , Proteínas de Unión a Tacrolimus/metabolismo
2.
EMBO J ; 29(3): 643-54, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20033060

RESUMEN

The alpha1S subunit has a dual function in skeletal muscle: it forms the L-type Ca(2+) channel in T-tubules and is the voltage sensor of excitation-contraction coupling at the level of triads. It has been proposed that L-type Ca(2+) channels might also be voltage-gated sensors linked to transcriptional activity controlling differentiation. By using the U7-exon skipping strategy, we have achieved long-lasting downregulation of alpha1S in adult skeletal muscle. Treated muscles underwent massive atrophy while still displaying significant amounts of alpha1S in the tubular system and being not paralysed. This atrophy implicated the autophagy pathway, which was triggered by neuronal nitric oxide synthase redistribution, activation of FoxO3A, upregulation of autophagy-related genes and autophagosome formation. Subcellular investigations showed that this atrophy was correlated with the disappearance of a minor fraction of alpha1S located throughout the sarcolemma. Our results reveal for the first time that this sarcolemmal fraction could have a role in a signalling pathway determining muscle anabolic or catabolic state and might act as a molecular sensor of muscle activity.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Canales de Calcio/fisiología , Morfogénesis/genética , Músculo Esquelético/embriología , Animales , Autofagia/genética , Secuencia de Bases , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fuerza Muscular/genética , Músculo Esquelético/anatomía & histología , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Tamaño de los Órganos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Distribución Tisular/genética
3.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468843

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Biomarcadores , Proteína de la Matriz Oligomérica del Cartílago/uso terapéutico , Distrofina/metabolismo , Fibrosis , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/terapia , Ratas
4.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917173

RESUMEN

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Asunto(s)
Calcio , Músculo Esquelético , Animales , Calcio/metabolismo , Homeostasis , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
5.
J Gen Physiol ; 153(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34636893

RESUMEN

One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli. These two processes, both dependent on depolarization of the plasma membrane, have so far been regarded as separated and independent processes due to a lack of evidence of common protein partners or molecular mechanisms. In this study, we reveal intimate functional interactions between the process of excitation-induced contraction and the process of excitation-induced transcriptional activity in skeletal muscle. We show that the plasma membrane voltage-sensing protein CaV1.1 and the ATP-releasing channel Pannexin-1 (Panx1) regulate each other in a reciprocal manner, playing roles in both processes. Specifically, knockdown of CaV1.1 produces chronically elevated extracellular ATP concentrations at rest, consistent with disruption of the normal control of Panx1 activity. Conversely, knockdown of Panx1 affects not only activation of transcription but also CaV1.1 function on the control of muscle fiber contraction. Altogether, our results establish the presence of bidirectional functional regulations between the molecular machineries involved in the control of contraction and transcription induced by membrane depolarization of adult muscle fibers. Our results are important for an integrative understanding of skeletal muscle function and may impact our understanding of several neuromuscular diseases.


Asunto(s)
Canales de Calcio Tipo L , Acoplamiento Excitación-Contracción , Canales de Calcio Tipo L/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
6.
Mol Biol Cell ; 30(5): 579-590, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601711

RESUMEN

Clathrin plaques are stable features of the plasma membrane observed in several cell types. They are abundant in muscle, where they localize at costameres that link the contractile apparatus to the sarcolemma and connect the sarcolemma to the basal lamina. Here, we show that clathrin plaques and surrounding branched actin filaments form microdomains that anchor a three-dimensional desmin intermediate filament (IF) web. Depletion of clathrin plaque and branched actin components causes accumulation of desmin tangles in the cytoplasm. We show that dynamin 2, whose mutations cause centronuclear myopathy (CNM), regulates both clathrin plaques and surrounding branched actin filaments, while CNM-causing mutations lead to desmin disorganization in a CNM mouse model and patient biopsies. Our results suggest a novel paradigm in cell biology, wherein clathrin plaques act as platforms capable of recruiting branched cortical actin, which in turn anchors IFs, both essential for striated muscle formation and function.


Asunto(s)
Actinas/metabolismo , Clatrina/metabolismo , Músculo Esquelético/metabolismo , Animales , Desmina/metabolismo , Dinamina II/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Mutación/genética , Miopatías Estructurales Congénitas/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
7.
Sci Transl Med ; 11(517)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694926

RESUMEN

Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 ß subunit (CaVß1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVß1E. CaVß1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVß1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVß1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVß1E analogous and show a correlation between CaVß1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVß1E or GDF5 might be effective in reducing muscle mass loss in aging.


Asunto(s)
Envejecimiento/metabolismo , Canales de Calcio Tipo L/metabolismo , Embrión de Mamíferos/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Músculos/anatomía & histología , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Animales , Atrofia , Canales de Calcio Tipo L/genética , Desnervación , Exones/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Músculos/inervación , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Condicionamiento Físico Animal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN/genética , Adulto Joven
8.
Skelet Muscle ; 8(1): 15, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703249

RESUMEN

BACKGROUND: Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. METHODS: By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. RESULTS: TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708 and miR-34c increased nNOS expression, confirming that both miRNAs can modulate nNOS expression in human myoblasts. CONCLUSION: These results strongly suggest that miR-708 and miR-34c, overexpressed in dystrophic context, are new actors involved in the regulation of nNOS expression in dystrophic muscle.


Asunto(s)
MicroARNs/genética , Distrofia Muscular de Duchenne/genética , Óxido Nítrico Sintasa de Tipo I/genética , Adolescente , Adulto , Anciano , Biopsia , Niño , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , MicroARNs/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mioblastos/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
9.
Lipids Health Dis ; 5: 27, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17049073

RESUMEN

BACKGROUND: The lipodystrophic syndrome (LD) is a disorder resulting from selective damage of adipose tissue by antiretroviral drugs included in therapy controlling human-immunodeficiency-virus-1. In the therapy cocktail the nucleoside reverse transcriptase inhibitors (NRTI) contribute to the development of this syndrome. Cellular target of NRTI was identified as the mitochondrial polymerase-gamma and their toxicity described as a mitochondrial DNA (mtDNA) depletion resulting in a mitochondrial cytopathy and involved in fat redistribution. No mechanisms offer explanation whatsoever for the lipo-atrophic and lipo-hypertrophic phenotype of LD. To understand the occurrence we proposed that the pO2 (oxygen partial pressure) could be a key factor in the development of the LD. For the first time, we report here differential effects of NRTIs on human adipose cells depending on pO2 conditions. RESULTS AND DISCUSSION: We showed that the hypoxia conditions could alter adipogenesis process by modifying expression of adipocyte makers as leptin and the peroxisome proliferator-activated receptor PPARgamma and inhibiting triglyceride (TG) accumulation in adipocytes. Toxicity of NRTI followed on adipose cells in culture under normoxia versus hypoxia conditions showed, differential effects of drugs on mtDNA of these cells depending on pO2 conditions. Moreover, NRTI-treated adipocytes were refractory to the inhibition of adipogenesis under hypoxia. Finally, our hypothesis that variations of pO2 could exist between adipose tissue from anatomical origins was supported by staining of the hypoxic-induced angiopoietin ANGPTL4 depended on the location of fat. CONCLUSION: Toxicity of NRTIs have been shown to be opposite on human adipose cells depending on the oxygen availability. These data suggest that the LD phenotype may be a differential consequence of NRTI effects, depending on the metabolic status of the targeted adipose tissues and provide new insights into the opposite effects of antiretroviral treatment, as observed for the lipo-atrophic and lipo-hypertrophic phenotype characteristic of LD.


Asunto(s)
Tejido Adiposo/metabolismo , Síndrome de Lipodistrofia Asociada a VIH/fisiopatología , Oxígeno/metabolismo , Inhibidores de la Transcriptasa Inversa/efectos adversos , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Tejido Adiposo/efectos de los fármacos , Células Cultivadas , ADN Mitocondrial/efectos de los fármacos , Regulación de la Expresión Génica , Síndrome de Lipodistrofia Asociada a VIH/etiología , Síndrome de Lipodistrofia Asociada a VIH/metabolismo , Humanos , Hipoxia/fisiopatología , Leptina/genética , Leptina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Péptidos Cíclicos , Fenotipo , Somatostatina/análogos & derivados , Somatostatina/genética , Somatostatina/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo
10.
Hum Gene Ther ; 27(9): 712-26, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279388

RESUMEN

At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSµ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSµ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.


Asunto(s)
Distrofina/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Perros , Músculo Esquelético/citología , Nitrosación
11.
J Cell Biol ; 205(3): 377-93, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24798732

RESUMEN

The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Costameras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sarcómeros/metabolismo , Células 3T3 , Actinina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Cadenas Pesadas de Clatrina/genética , Costameras/patología , Proteínas de Unión al ADN/metabolismo , Dependovirus/genética , Dinamina II/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Contracción Muscular , Fibras Musculares Esqueléticas/patología , Fuerza Muscular , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/fisiopatología , Sarcómeros/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA