Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 160(4): 700-714, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679762

RESUMEN

PTX3 is an essential component of the humoral arm of innate immunity, playing a nonredundant role in resistance against selected microbes and in the regulation of inflammation. PTX3 activates and regulates the Complement cascade by interacting with C1q and with Factor H. PTX3 deficiency was associated with increased susceptibility to mesenchymal and epithelial carcinogenesis. Increased susceptibility of Ptx3(-/-) mice was associated with enhanced macrophage infiltration, cytokine production, angiogenesis, and Trp53 mutations. Correlative evidence, gene-targeted mice, and pharmacological blocking experiments indicated that PTX3 deficiency resulted in amplification of Complement activation, CCL2 production, and tumor-promoting macrophage recruitment. PTX3 expression was epigenetically regulated in selected human tumors (e.g., leiomyosarcomas and colorectal cancer) by methylation of the promoter region and of a putative enhancer. Thus, PTX3, an effector molecule belonging to the humoral arm of innate immunity, acts as an extrinsic oncosuppressor gene in mouse and man by regulating Complement-dependent, macrophage-sustained, tumor-promoting inflammation.


Asunto(s)
Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Inflamación/metabolismo , Neoplasias/inmunología , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Animales , Proteínas del Sistema Complemento/metabolismo , Metilación de ADN , Genes p53 , Humanos , Ratones , Mutación
2.
Int Arch Allergy Immunol ; 165(3): 165-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531094

RESUMEN

The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These PRMs recognize pathogen-associated molecular patterns and are functional ancestors of antibodies, playing a role in complement activation, opsonization and agglutination. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. The prototypic long pentraxin PTX3 is highly conserved in evolution and produced by somatic and innate immune cells after proinflammatory stimuli. PTX3 interacts with a set of self, nonself and modified self ligands and exerts essential roles in innate immunity, inflammation control and matrix deposition. In addition, translational studies suggest that PTX3 may be a useful biomarker of human pathologies complementary to C-reactive protein. In this study, we will review the general functions of pentraxins in innate immunity and inflammation, focusing our attention on the prototypic long pentraxin PTX3.


Asunto(s)
Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Infecciones/diagnóstico , Inflamación/inmunología , Neoplasias/diagnóstico , Componente Amiloide P Sérico/metabolismo , Animales , Evolución Biológica , Proteína C-Reactiva/genética , Activación de Complemento , Secuencia Conservada/genética , Humanos , Inmunidad Innata , Receptores de Reconocimiento de Patrones/inmunología , Componente Amiloide P Sérico/genética
3.
Cardiovasc Res ; 111(4): 373-84, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297888

RESUMEN

AIMS: Platelets express functional interleukin-1 receptor-1 (IL-1R1) as well as a repertoire of toll-like receptors (TLRs) involved in platelet activation, platelet-leucocyte reciprocal activation, and immunopathology. IL-1R8, also known as single Ig IL-1-related receptor (SIGIRR) or TIR8, is a member of the IL-1R family that negatively regulates responses to IL-1R family members and TLRs. In the present study, we addressed the expression of IL-1R8 in platelets and megakaryocytes and its role in the control of platelet activation during inflammatory conditions and thromboembolism. METHODS AND RESULTS: Here, we show by flow cytometry analysis, western blot, confocal microscopy, and quantitative real-time polymerase chain reaction that IL-1R8 is expressed on human and mouse platelets at high levels and on megakaryocytes. IL-1R8-deficient mice show normal levels of circulating platelets. Homotypic and heterotypic (platelet-neutrophil) aggregation triggered by Adenosine DiPhosphate (ADP) and IL-1 or lipopolysaccharide (LPS) was increased in IL-1R8-deficient platelets. IL-1R8-deficient mice showed increased soluble P-selectin levels and increased platelet-neutrophil aggregates after systemic LPS administration. Commensal flora depletion and IL-1R1 deficiency abated platelet hyperactivity and the increased platelet/neutrophil aggregation observed in Il1r8(-/-) mice in vitro and in vivo, suggesting a key role of IL-1R8 in regulating platelet TLR and IL-1R1 function. In a mouse model of platelet-dependent pulmonary thromboembolism induced by ADP administration, IL-1R8-deficient mice showed an increased frequency of blood vessel complete obstruction. CONCLUSION: These results show that platelets, which have a large repertoire of TLRs and IL-1 receptors, express high levels of IL-1R8, which plays a non-redundant function as a regulator of thrombocyte activity in vitro and in vivo.


Asunto(s)
Plaquetas/metabolismo , Receptores de Interleucina-1/metabolismo , Animales , Plaquetas/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/metabolismo , Interleucina-1/metabolismo , Lipopolisacáridos/farmacología , Ratones Transgénicos , Activación Plaquetaria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo
4.
Front Immunol ; 4: 180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847621

RESUMEN

Members of the IL-1 family play a key role in innate and adaptive immunity and in the pathogenesis of diverse diseases. Members of IL-1R like receptor (ILR) family include signaling molecules and negative regulators. The latter include decoy receptors (IL-1RII; IL-18BP) and "receptors" with regulatory function (TIR8/SIGIRR; IL-1RAcPb; DIGIRR). Structural considerations suggest that also TIGIRR-1 and IL-1RAPL may have regulatory function. The presence of multiple pathways of negative regulation of members of the IL-1/IL-1R family emphasizes the need for a tight control of members of this fundamental system.

5.
Ann N Y Acad Sci ; 1285: 1-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23527487

RESUMEN

Pattern recognition molecules (PRMs) are components of the humoral arm of innate immunity; they recognize pathogen-associated molecular patterns (PAMP) and are functional ancestors of antibodies, promoting complement activation, opsonization, and agglutination. In addition, several PRMs have a regulatory function on inflammation. Pentraxins are a family of evolutionarily conserved PRMs characterized by a cyclic multimeric structure. On the basis of structure, pentraxins have been operationally divided into short and long families. C-reactive protein (CRP) and serum amyloid P component are prototypes of the short pentraxin family, while pentraxin 3 (PTX3) is a prototype of the long pentraxins. PTX3 is produced by somatic and immune cells in response to proinflammatory stimuli and Toll-like receptor engagement, and it interacts with several ligands and exerts multifunctional properties. Unlike CRP, PTX3 gene organization and regulation have been conserved in evolution, thus allowing its pathophysiological roles to be evaluated in genetically modified animals. Here we will briefly review the general properties of CRP and PTX3 as prototypes of short and long pentraxins, respectively, emphasizing in particular the functional role of PTX3 as a prototypic PRM with antibody-like properties.


Asunto(s)
Proteína C-Reactiva/inmunología , Inmunidad Humoral , Componente Amiloide P Sérico/inmunología , Animales , Proteína C-Reactiva/química , Proteína C-Reactiva/genética , Humanos , Componente Amiloide P Sérico/química , Componente Amiloide P Sérico/genética , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA