Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(49): 26720-26727, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38051161

RESUMEN

Separation of carbon dioxide (CO2) from point sources or directly from the atmosphere can contribute crucially to climate change mitigation plans in the coming decades. A fundamental practical limitation for the current strategies is the considerable energy cost required to regenerate the sorbent and release the captured CO2 for storage or utilization. A directly photochemically driven system that demonstrates efficient passive capture and on-demand CO2 release triggered by sunlight as the sole external stimulus would provide an attractive alternative. However, little is known about the thermodynamic requirements for such a process or mechanisms for modulating the stability of CO2-derived dissolved species by using photoinduced metastable states. Here, we show that an organic photoswitchable molecule of precisely tuned effective acidity can repeatedly capture and release a near-stoichiometric quantity of CO2 according to dark-light cycles. The CO2-derived species rests as a solvent-separated ion pair, and key aspects of its excited-state dynamics that regulate the photorelease efficiency are characterized by transient absorption spectroscopy. The thermodynamic and kinetic concepts established herein will serve as guiding principles for the development of viable solar-powered negative emission technologies.

2.
Chemphyschem ; 21(6): 468, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32175666

RESUMEN

The front cover artwork is provided by the groups of Prof. Atanassov and Prof. Zenyuk (University of California Irvine, USA). The image shows rate-determining step of oxygen reduction reaction on platinum nanoparticle supported by carbon, which requires electron transfer but no proton. Read the full text of the Article at 10.1002/cphc.201901091.

3.
Chemphyschem ; 21(6): 469-475, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31945252

RESUMEN

Kinetic isotope effect (KIE) was used to study the rate-determining step for oxygen reduction reaction (ORR) on dispersed Pt/C electrocatalyst and polycrystalline Pt (Pt-poly). KIE is defined as the ratio of the kinetic current measured in protonated electrolyte versus deuterated electrolyte, with KIE values larger than one indicating proton participation in the rate-determining step. The effect of poisoning anions on the platinum rate determining step is investigated by assessing the KIE in perchloric (non-poisoning) and sulfuric acid-based electrolytes. The kinetics currents were calculated using the Koutechy-Levich and Tafel analysis. A KIE of 1 was observed for Pt/C (with a 40 wt.% Pt loading) and Pt-poly, thus indicating that, on 40 wt. % Pt/C and Pt-poly, the rate determining step is proton independent.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38050967

RESUMEN

Membrane transport properties are crucial for electrochemical devices, and these properties are influenced by the composition and concentration of the electrolyte in contact with the membrane. We apply this general membrane-electrolyte system approach to alkaline flow batteries, studying the conductivity and ferricyanide crossover of Nafion and E-620. We report undetectable crossover for as-received Nafion and E-620 after both sodium and potassium exchange but high ferricyanide permeability of 10-7 to 10-8 cm2 s-1 for Nafion subjected to pretreatment prevalent in the flow battery literature. We show how the electrolyte mass fraction in hydrated membranes regulates the influence of ion concentration on membrane conductivity, identifying that increasing electrolyte concentration may not increase membrane conductivity even when it increases electrolyte conductivity. To illustrate this behavior, we introduce a new metric, the membrane penalty, as the ratio of the conductivity of the electrolyte to that of the membrane equilibrated with the electrolyte. We discuss the trade-off between flow battery volumetric capacity and areal power density that arises from these findings. Finally, we apply insights from this approach to provide recommendations for use of membranes in alkaline flow cells and electrochemical reactors in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA