Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Dermatol ; 32(4): 379-391, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36398464

RESUMEN

Chemokines are a group of small proteins that induce chemoattraction and inflammation and contribute to the differentiation and homeostasis of various cell types. Here we explored the role of chemokines, extracellular matrix production, and myofibroblast differentiation in self-assembled skin equivalents (SASE), a three-dimensional (3D) skin-equivalent tissue model. We found that the expression of three chemokines, C-C motif chemokine ligand (CCL) 20, C-X-C motif chemokine ligand (CXCL) 5, and CXCL8, increased with differentiation to myofibroblasts. Addition of recombinant CCL20 to human skin fibroblast induced collagen Type I alpha 2 gene expression, but did not affect the expression of alpha smooth muscle actin expression. Conversely, siRNA gene knockdown of CCL20 effectively inhibited the expression of collagen Type I gene and protein. Furthermore, when the CCL20 gene in fibroblasts was knocked down in SASE, collagen Type I synthesis and stromal thickness were decreased. Taken together, these results have indicated the utility of SASE in understanding how cytokines such as CCL20 positively regulate extracellular matrix proteins such as collagen Type I production during myofibroblast differentiation in 3D tissues that mimic human skin.


Asunto(s)
Quimiocinas CC , Colágeno Tipo I , Humanos , Quimiocinas CC/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ligandos , Piel/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Diferenciación Celular/fisiología , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Células Cultivadas , Actinas/metabolismo
2.
Exp Dermatol ; 30(8): 1065-1072, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114688

RESUMEN

Diabetic foot ulcers (DFUs), a prevalent complication of diabetes, constitute a major medical challenge with a critical need for development of cell-based therapies. We previously generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts derived from the DFU patients, location-matched skin of diabetic patients and normal healthy donors and re-differentiated them into fibroblasts. To assess the epigenetic microRNA (miR) regulated changes triggered by cellular reprogramming, we performed miRs expression profiling. We found let-7c, miR-26b-5p, -29c-3p, -148a-3p, -196a-5p, -199b-5p and -374a-5p suppressed in iPSC-derived fibroblasts in vitro and in 3D dermis-like self-assembly tissue, whereas their corresponding targets involved in cellular migration were upregulated. Moreover, targets involved in organization of extracellular matrix were induced after fibroblast reprogramming. PLAT gene, the crucial fibrinolysis factor, was upregulated in iPSC-derived fibroblasts and was confirmed as a direct target of miR-196a-5p. miR-197-3p and miR-331-3p were found upregulated specifically in iPSC-derived diabetic fibroblasts, while their targets CAV1 and CDKN3 were suppressed. CAV1, an important negative regulator of wound healing, was confirmed as a direct miR-197-3p target. Together, our findings demonstrate that iPSC reprogramming is an effective approach for erasing the diabetic non-healing miR-mediated epigenetic signature and promoting a pro-healing cellular phenotype.


Asunto(s)
Reprogramación Celular/genética , Pie Diabético/genética , Epigénesis Genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Cicatrización de Heridas/genética , Movimiento Celular/genética , Humanos , Regulación hacia Arriba
3.
FASEB J ; 33(1): 1262-1277, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30088952

RESUMEN

Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.


Asunto(s)
Diferenciación Celular , Pie Diabético/patología , Células Madre Pluripotentes Inducidas/citología , Animales , Línea Celular , Movimiento Celular , Proliferación Celular , Pie Diabético/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones SCID , Fenotipo , Cicatrización de Heridas/genética
4.
Reprod Biol Endocrinol ; 16(1): 24, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29548332

RESUMEN

BACKGROUND: The initiation of primate embryo invasion into the endometrium and the formation of the placenta from trophoblasts, fetal mesenchyme, and vascular components are essential for the establishment of a successful pregnancy. The mechanisms which direct morphogenesis of the chorionic villi, and the interactions between trophectoderm-derived trophoblasts and the fetal mesenchyme to direct these processes during placentation are not well understood due to a dearth of systems to examine and manipulate real-time primate implantation. Here we describe an in vitro three-dimensional (3-D) model to study implantation which utilized IVF-generated rhesus monkey embryos cultured in a Matrigel explant system. METHODS: Blastocyst stage embryos were embedded in a 3-D microenvironment of a Matrigel carrier and co-cultured with a feeder layer of cells generating conditioned medium. Throughout the course of embryo co-culture embryo growth and secretions were monitored. Embedded embryos were then sectioned and stained for markers of trophoblast function and differentiation. RESULTS: Signs of implantation were observed including enlargement of the embryo mass, and invasion and proliferation of trophoblast outgrowths. Expression of chorionic gonadotropin defined by immunohistochemical staining, and secretion of chorionic gonadotropin and progesterone coincident with the appearance of trophoblast outgrowths, supported the conclusion that a trophoblast cell lineage formed from implanted embryos. Positive staining for selected markers including Ki67, MHC class I, NeuN, CD31, vonWillebrand Factor and Vimentin, suggest growth and differentiation of the embryo following embedding. CONCLUSIONS: This 3-D in vitro system will facilitate further study of primate embryo biology, with potential to provide a platform for study of genes related to implantation defects and trophoblast differentiation.


Asunto(s)
Implantación del Embrión/fisiología , Macaca mulatta/embriología , Trofoblastos/fisiología , Animales , Diferenciación Celular , Gonadotropina Coriónica/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Fertilización In Vitro/veterinaria , Modelos Biológicos , Morfogénesis , Placentación/fisiología , Embarazo , Progesterona/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo
5.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561223

RESUMEN

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFß1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.


Asunto(s)
Nefritis Hereditaria , Podocitos , Ratones , Animales , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Podocitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Células Madre/metabolismo
6.
Hum Mol Genet ; 20(5): 962-74, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21156717

RESUMEN

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.


Asunto(s)
Amnios/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Animales , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo
7.
J Am Soc Nephrol ; 20(11): 2359-70, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19833902

RESUMEN

Patients with Alport syndrome progressively lose renal function as a result of defective type IV collagen in their glomerular basement membrane. In mice lacking the alpha3 chain of type IV collagen (Col4A3 knockout mice), a model for Alport syndrome, transplantation of wild-type bone marrow repairs the renal disease. It is unknown whether cell-based therapies that do not require transplantation have similar potential. Here, infusion of wild-type bone marrow-derived cells into unconditioned, nonirradiated Col4A3 knockout mice during the late stage of disease significantly improved renal histology and function. Furthermore, transfusion of unfractionated wild-type blood into unconditioned, nonirradiated Col4A3 knockout mice improved the renal phenotype and significantly improved survival. Injection of mouse and human embryonic stem cells into Col4A3 knockout mice produced similar results. Regardless of treatment modality, the improvement in the architecture of the glomerular basement membrane is associated with de novo expression of the alpha3(IV) chain. These data provide further support for testing cell-based therapies for Alport syndrome.


Asunto(s)
Nefritis Hereditaria/cirugía , Trasplante de Células Madre , Animales , Autoantígenos/genética , Células de la Médula Ósea , Colágeno Tipo IV/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Adv Healthc Mater ; 9(16): e2000307, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32597577

RESUMEN

Diabetic foot ulcers (DFUs) are chronic wounds, with 20% of cases resulting in amputation, despite intervention. A recently approved tissue engineering product-a cell-free collagen-glycosaminoglycan (GAG) scaffold-demonstrates 50% success, motivating its functionalization with extracellular matrix (ECM). Induced pluripotent stem cell (iPSC) technology reprograms somatic cells into an embryonic-like state. Recent findings describe how iPSCs-derived fibroblasts ("post-iPSF") are proangiogenic, produce more ECM than their somatic precursors ("pre-iPSF"), and their ECM has characteristics of foetal ECM (a wound regeneration advantage, as fetuses heal scar-free). ECM production is 45% higher from post-iPSF and has favorable components (e.g., Collagen I and III, and fibronectin). Herein, a freeze-dried scaffold using ECM grown by post-iPSF cells (Post-iPSF Coll) is developed and tested vs precursors ECM-activated scaffolds (Pre-iPSF Coll). When seeded with healthy or DFU fibroblasts, both ECM-derived scaffolds have more diverse ECM and more robust immune responses to cues. Post-iPSF-Coll had higher GAG, higher cell content, higher Vascular Endothelial Growth Factor (VEGF) in DFUs, and higher Interleukin-1-receptor antagonist (IL-1ra) vs. pre-iPSF Coll. This work constitutes the first step in exploiting ECM from iPSF for tissue engineering scaffolds.


Asunto(s)
Diabetes Mellitus , Células Madre Pluripotentes Inducidas , Matriz Extracelular , Fibroblastos , Humanos , Ingeniería de Tejidos , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
9.
Reprod Sci ; 25(5): 712-726, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28854867

RESUMEN

Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2+ granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2- cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.


Asunto(s)
Cuerpos Embrioides/fisiología , Células de la Granulosa/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Esteroides/biosíntesis , Animales , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Femenino , Expresión Génica , Células de la Granulosa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones
10.
Curr Protoc Hum Genet ; 95: 21.10.1-21.10.22, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044473

RESUMEN

Yamanaka and colleagues revolutionized stem cell biology and regenerative medicine by observing that somatic cells can be reprogrammed into pluripotent stem cells. Evidence indicates that induced pluripotent stem (iPS) cells retain epigenetic memories that bias their spontaneous differentiation into the originating somatic cell type, therefore epigenetic memory may be exploited to improve tissue specific regeneration. We recently showed that iPS cells reprogrammed from ovarian granulosa cells using mouse and human tissue overwhelmingly differentiate homotypically into ovarian steroidogenic and primordial germ cells. Herein we detail a protocol for the culture of human ovarian granulosa cells. We review approaches for reprogramming human ovarian granulosa cells into iPS cells. Standard methods to induce pluripotency are outlined, concentrating on integrative retroviruses. Additionally, alternative protocols for lentivirus and Sendai virus are provided. Each approach has inherent limitations, such as reprogramming efficiency, insertional mutagenesis, and partial reprogramming. Major advances continue to be made in somatic cell reprogramming to identify an optimal approach and utilization in cell-based therapies. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Ovario/citología , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Línea Celular , Separación Celular/métodos , Transformación Celular Neoplásica , Femenino , Vectores Genéticos/genética , Células de la Granulosa/citología , Humanos , Inmunohistoquímica , Lentivirus/genética , Fenotipo , Reacción en Cadena de la Polimerasa , Retroviridae/genética , Virus Sendai/genética , Teratoma/etiología , Teratoma/patología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA