Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 36(7): e22385, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35734962

RESUMEN

Skeletal muscles can regenerate over the lifetime from resident muscle stem cells (MuSCs). Interactions between MuSCs and extracellular matrix (ECM) proteins are essential for muscle regeneration. The best-known receptors for ECM proteins are integrins, a family composed of twenty-some heterodimeric combinations of an α- and a ß-subunit. ß1-integrin (encoded by Itgb1) is required for quiescence, proliferation, migration, and fusion of Pax7+ MuSCs in the mouse model. ß3-integrin (encoded by Itgb3) has been reported to be critical for the myogenic differentiation of C2C12 myoblasts, and Itgb3 germline mutant mice were shown to regenerate few if any myofibers after injury. To investigate the autonomous role of Itgb3 in the myogenic lineage in vivo, we conditionally inactivated a floxed Itgb3 allele (Itgb3F ) by constitutive Pax7-Cre and tamoxifen-inducible Pax7-CreERT2 drivers. Unexpectedly, we found no defects in muscle regeneration in both conditional knockout models. In vitro studies using Itgb3 mutant myoblasts or RNAi knockdown of Itgb3 in myoblasts also did not reveal a role for myogenic differentiation. As ß1- and ß3-integrins share ECM ligands and downstream signaling effectors, we further examined Itgb3's role in a Itgb1 haploid background. Still, we found no evidence for an autonomous role of Itgb3 in muscle regeneration in vivo. Thus, while Itgb3 is critical for the differentiation of C2C12 cells, the regenerative defects reported for the Itgb3 germline mutant are not due to its role in the MuSC. We conclude that if ß3-integrin does have a role in Pax7+ MuSCs, it is compensated by ß1- and/or another ß-integrin(s).


Asunto(s)
Desarrollo de Músculos , Mioblastos , Animales , Diferenciación Celular , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Transducción de Señal
2.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451441

RESUMEN

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Comunicación Celular , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitosis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Dinaminas/genética , Femenino , Guanosina Trifosfato/metabolismo , Masculino , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA