Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805548

RESUMEN

Trait anxiety is a major risk factor for stress-induced and anxiety disorders in humans. However, animal models accounting for the interindividual variability in stress vulnerability are largely lacking. Moreover, the pervasive bias of using mostly male animals in preclinical studies poorly reflects the increased prevalence of psychiatric disorders in women. Using the threat imminence continuum theory, we designed and validated an auditory aversive conditioning-based pipeline in both female and male mice. We operationalised trait anxiety by harnessing the naturally occurring variability of defensive freezing responses combined with a model-based clustering strategy. While sustained freezing during prolonged retrieval sessions was identified as an anxiety-endophenotype behavioral marker in both sexes, females were consistently associated with an increased freezing response. RNA-sequencing of CeA, BLA, ACC, and BNST revealed massive differences in phasic and sustained responders' transcriptomes, correlating with transcriptomic signatures of psychiatric disorders, particularly post-traumatic stress disorder (PTSD). Moreover, we detected significant alterations in the excitation/inhibition balance of principal neurons in the lateral amygdala. These findings provide compelling evidence that trait anxiety in inbred mice can be leveraged to develop translationally relevant preclinical models to investigate mechanisms of stress susceptibility in a sex-specific manner.


Asunto(s)
Ansiedad , Modelos Animales de Enfermedad , Animales , Masculino , Femenino , Ansiedad/fisiopatología , Ansiedad/genética , Ratones , Miedo/fisiología , Ratones Endogámicos C57BL , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/fisiopatología , Transcriptoma/genética , Amígdala del Cerebelo/metabolismo , Conducta Animal/fisiología
2.
Proc Natl Acad Sci U S A ; 120(1): e2214972120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36580592

RESUMEN

Regression learning is one of the long-standing problems in statistics, machine learning, and deep learning (DL). We show that writing this problem as a probabilistic expectation over (unknown) feature probabilities - thus increasing the number of unknown parameters and seemingly making the problem more complex-actually leads to its simplification, and allows incorporating the physical principle of entropy maximization. It helps decompose a very general setting of this learning problem (including discretization, feature selection, and learning multiple piece-wise linear regressions) into an iterative sequence of simple substeps, which are either analytically solvable or cheaply computable through an efficient second-order numerical solver with a sublinear cost scaling. This leads to the computationally cheap and robust non-DL second-order Sparse Probabilistic Approximation for Regression Task Analysis (SPARTAn) algorithm, that can be efficiently applied to problems with millions of feature dimensions on a commodity laptop, when the state-of-the-art learning tools would require supercomputers. SPARTAn is compared to a range of commonly used regression learning tools on synthetic problems and on the prediction of the El Niño Southern Oscillation, the dominant interannual mode of tropical climate variability. The obtained SPARTAn learners provide more predictive, sparse, and physically explainable data descriptions, clearly discerning the important role of ocean temperature variability at the thermocline in the equatorial Pacific. SPARTAn provides an easily interpretable description of the timescales by which these thermocline temperature features evolve and eventually express at the surface, thereby enabling enhanced predictability of the key drivers of the interannual climate.


Asunto(s)
El Niño Oscilación del Sur , Clima Tropical , Entropía , Temperatura , Algoritmos
3.
Mol Psychiatry ; 29(10): 3010-3023, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38649752

RESUMEN

Chronic stress has become a predominant factor associated with a variety of psychiatric disorders, such as depression and anxiety, in both human and animal models. Although multiple studies have looked at transcriptional changes after social defeat stress, these studies primarily focus on bulk tissues, which might dilute important molecular signatures of social interaction in activated cells. In this study, we employed the Arc-GFP mouse model in conjunction with chronic social defeat (CSD) to selectively isolate activated nuclei (AN) populations in the ventral hippocampus (vHIP) and prefrontal cortex (PFC) of resilient and susceptible animals. Nuclear RNA-seq of susceptible vs. resilient populations revealed distinct transcriptional profiles linked predominantly with neuronal and synaptic regulation mechanisms. In the vHIP, susceptible AN exhibited increased expression of genes related to the cytoskeleton and synaptic organization. At the same time, resilient AN showed upregulation of cell adhesion genes and differential expression of major glutamatergic subunits. In the PFC, susceptible mice exhibited upregulation of synaptotagmins and immediate early genes (IEGs), suggesting a potentially over-amplified neuronal activity state. Our findings provide a novel view of stress-exposed neuronal activation and the molecular response mechanisms in stress-susceptible vs. resilient animals, which may have important implications for understanding mental resilience.


Asunto(s)
Hipocampo , Neuronas , Corteza Prefrontal , Estrés Psicológico , Animales , Estrés Psicológico/metabolismo , Estrés Psicológico/genética , Ratones , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Transcriptoma/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Derrota Social , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ansiedad/metabolismo , Ansiedad/genética
4.
Mol Psychiatry ; 29(5): 1427-1439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38287100

RESUMEN

One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid ß (Aß). Aß mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aß-induced mitochondrial dysfunction.


Asunto(s)
Adenosina , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Complejo I de Transporte de Electrón , Mitocondrias , ARN Mensajero , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Mitocondrias/metabolismo , Metilación , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Péptidos beta-Amiloides/metabolismo , Masculino , Femenino , Anciano , Metiltransferasas/metabolismo , Metiltransferasas/genética , Anciano de 80 o más Años , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
5.
BMC Bioinformatics ; 25(1): 293, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237879

RESUMEN

BACKGROUND: Gene expression and alternative splicing are strictly regulated processes that shape brain development and determine the cellular identity of differentiated neural cell populations. Despite the availability of multiple valuable datasets, many functional implications, especially those related to alternative splicing, remain poorly understood. Moreover, neuroscientists working primarily experimentally often lack the bioinformatics expertise required to process alternative splicing data and produce meaningful and interpretable results. Notably, re-analyzing publicly available datasets and integrating them with in-house data can provide substantial novel insights. However, such analyses necessitate developing harmonized data handling and processing pipelines which in turn require considerable computational resources and in-depth bioinformatics expertise. RESULTS: Here, we present Cortexa-a comprehensive web portal that incorporates RNA-sequencing datasets from the mouse cerebral cortex (longitudinal or cell-specific) and the hippocampus. Cortexa facilitates understandable visualization of the expression and alternative splicing patterns of individual genes. Our platform provides SplicePCA-a tool that allows users to integrate their alternative splicing dataset and compare it to cell-specific or developmental neocortical splicing patterns. All standardized gene expression and alternative splicing datasets can be downloaded for further in-depth downstream analysis without the need for extensive preprocessing. CONCLUSIONS: Cortexa provides a robust and readily available resource for unraveling the complexity of gene expression and alternative splicing regulatory processes in the mouse brain. The data portal is available at https://cortexa-rna.com/.


Asunto(s)
Empalme Alternativo , Encéfalo , Animales , Empalme Alternativo/genética , Ratones , Encéfalo/metabolismo , Biología Computacional/métodos , Programas Informáticos , Bases de Datos Genéticas , Análisis de Secuencia de ARN/métodos , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Perfilación de la Expresión Génica/métodos
6.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549052

RESUMEN

SUMMARY: Oxford Nanopore Technologies' (ONT) sequencing platform offers an excellent opportunity to perform real-time analysis during sequencing. This feature allows for early insights into experimental data and accelerates a potential decision-making process for further analysis, which can be particularly relevant in the clinical context. Although some tools for the real-time analysis of DNA-sequencing data already exist, there is currently no application available for differential transcriptome data analysis designed for scientists or physicians with limited bioinformatics knowledge. Here, we introduce NanopoReaTA, a user-friendly real-time analysis toolbox for RNA-sequencing data from ONT. Sequencing results from a running or finished experiment are processed through an R Shiny-based graphical user interface with an integrated Nextflow pipeline for whole transcriptome or gene-specific analyses. NanopoReaTA provides visual snapshots of a sequencing run in progress, thus enabling interactive sequencing and rapid decision making that could also be applied to clinical cases. AVAILABILITY AND IMPLEMENTATION: Github https://github.com/AnWiercze/NanopoReaTA; Zenodo https://doi.org/10.5281/zenodo.8099825.


Asunto(s)
Nanoporos , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Análisis de Secuencia de ARN/métodos
7.
J Med Virol ; 96(5): e29610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654702

RESUMEN

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Asunto(s)
Genoma Viral , Metagenómica , Monkeypox virus , Mpox , Secuenciación de Nanoporos , Secuenciación Completa del Genoma , Humanos , Genoma Viral/genética , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Mpox/epidemiología , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Secuenciación Completa del Genoma/métodos , Nanoporos , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
J Rheumatol ; 51(2): 130-133, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302188

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is one of the most common and prognostic organ manifestations of RA. Therefore, to allow effective treatment, it is of crucial importance to diagnose RA-ILD at the earliest possible stage. So far, the gold standard of early detection has been high-resolution computed tomography (HRCT) of the lungs. This procedure involves considerable radiation exposure for the patient and is therefore unsuitable as a routine screening measure for ethical reasons. Here, we propose the analysis of characteristic gene expression patterns as a biomarker to aid in the early detection and initiation of appropriate, possibly antifibrotic, therapy. METHODS: To investigate unique molecular patterns of RA-ILD, whole blood samples were taken from 12 female patients with RA-ILD (n = 7) or RA (n = 5). The RNA was extracted, sequenced by RNA-Seq, and analyzed for characteristic differences in the gene expression patterns between patients with RA-ILD and those with RA without ILD. RESULTS: The differential gene expression analysis revealed 9 significantly upregulated genes in RA-ILD compared to RA without ILD: arginase 1 (ARG1), thymidylate synthetase (TYMS), sortilin 1 (SORT1), marker of proliferation Ki-67 (MKI67), olfactomedin 4 (OLFM4), baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5), membrane spanning 4-domains A4A (MS4A4A), C-type lectin domain family 12 member A (CLEC12A), and the long intergenic nonprotein coding RNA (LINC02967). CONCLUSION: All gene products of these genes (except for LINC02967) are known from the literature to be involved in the pathogenesis of fibrosis. Further, for some, a contribution to the development of pulmonary fibrosis has even been demonstrated in experimental studies. Therefore, the results presented here provide an encouraging perspective for using specific gene expression patterns as biomarkers for the early detection and differential diagnosis of RA-ILD as a routine screening test.


Asunto(s)
Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Humanos , Femenino , Artritis Reumatoide/complicaciones , Artritis Reumatoide/genética , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/genética , Biomarcadores , Perfilación de la Expresión Génica , ARN , Receptores Mitogénicos , Lectinas Tipo C
9.
J Eur Acad Dermatol Venereol ; 37(4): 817-822, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36331357

RESUMEN

BACKGROUND: Most cases of hereditary ichthyoses present with generalized scaling and skin dryness. However, in some cases skin involvement is restricted to particular body regions as in acral lamellar ichthyosis. OBJECTIVES: We report on the genetic basis of acral ichthyosis in two families presenting with a similar phenotype. METHODS: Genetic testing was performed by targeted next generation sequencing and whole-exome sequencing. For identity-by-descent analysis, the parents were genotyped and data analysis was performed with the Chromosome Analysis Suite Software. RT-PCR with RNA extracted from skin samples was used to analyse the effect of variants on splicing. RESULTS: Genetic testing identified a few heterozygous variants, but only the variant in KRT2 c.1912 T > C, p.Phe638Leu segregated with the disease and remained the strongest candidate. Pairwise identity-by-descent analysis revealed no indication of family relationship. Phenylalanine 638 is the second last amino acid upstream of the termination codon in the tail of K2, and substitution to leucine is predicted as probably damaging. Assessment of the variant is difficult, in part due to the lack of crystal structures of this region. CONCLUSIONS: Altogether, we show that a type of autosomal dominant acral ichthyosis is most probably caused by an amino acid substitution in the C-terminus of keratin 2.


Asunto(s)
Sustitución de Aminoácidos , Ictiosis Lamelar , Queratina-2 , Humanos , Sustitución de Aminoácidos/genética , Ictiosis Lamelar/genética , Queratina-2/genética , Fenotipo
10.
Bioinformatics ; 37(21): 3972-3973, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34601559

RESUMEN

SUMMARY: The IntelliCage systems offer the possibility to conduct long-term behavioral experiments on mice in social groups without human intervention. Although this setup provides new findings, only about 150 studies with the IntelliCage system have been published in the last two decades, which is also caused by the challenging problems of processing and handling the large and heterogeneous amounts of captured data. This application note introduces the Python-GUI IntelliPy, especially designed for users not very experienced in using programming languages. IntelliPy allows users to quickly analyze the IntelliCage output in a user-friendly way, thus making the systems more accessible to a broader audience. AVAILABILITY AND IMPLEMENTATION: https://github.com/NiRuff/IntelliPy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lenguajes de Programación , Programas Informáticos , Animales , Ratones , Humanos
11.
Cell Mol Life Sci ; 78(3): 1029-1050, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32468095

RESUMEN

Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2-/- mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2-/- mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2-/- mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2-/- mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2-/- were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2-/- phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better  performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Neuronas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Envejecimiento , Animales , Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Cromatografía Líquida de Alta Presión , Giro Dentado/metabolismo , Análisis Discriminante , Familia de Proteínas EGF/deficiencia , Familia de Proteínas EGF/genética , Femenino , Hígado/metabolismo , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Componente Principal , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/deficiencia , Receptores del Ácido Lisofosfatídico/genética , Espectrometría de Masas en Tándem
12.
BMC Genomics ; 22(1): 62, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468057

RESUMEN

BACKGROUND: Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which allowed us to investigate the effect of the bioinformatics analysis strategy separately from the sequencing platform's impact. RESULTS: The number of detected variants/variant classes per individual was highly dependent on the experimental setup. We observed a statistically significant overrepresentation of variants uniquely called by a single setup, indicating potential systematic biases. Insertion/deletion polymorphisms (indels) were associated with decreased concordance compared to single nucleotide polymorphisms (SNPs). The discrepancies in indel absolute numbers were particularly prominent in introns, Alu elements, simple repeats, and regions with medium GC content. Notably, reprocessing sequencing data following the best practice recommendations of GATK considerably improved concordance between the respective setups. CONCLUSION: We provide empirical evidence of systematic heterogeneity in variant calls between alternative experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic data with harmonized pipelines when integrating data from different studies.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios Transversales , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
13.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069481

RESUMEN

Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques "Isolation of Nuclei Tagged in Specific Cell Types" (INTACT) or "Fluorescence-Activated Nuclei Sorting" (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods-INTACT and FANS-from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Femenino , Fluorescencia , Masculino , Ratones , Transporte de Proteínas/fisiología
14.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204880

RESUMEN

Dysregulated mammalian target of rapamycin (mTOR) activity is associated with various neurodevelopmental disorders ranging from idiopathic autism spectrum disorders (ASD) to syndromes caused by single gene defects. This suggests that maintaining mTOR activity levels in a physiological range is essential for brain development and functioning. Upon activation, mTOR regulates a variety of cellular processes such as cell growth, autophagy, and metabolism. On a molecular level, however, the consequences of mTOR activation in the brain are not well understood. Low levels of cholesterol are associated with a wide variety of neurodevelopmental disorders. We here describe numerous genes of the sterol/cholesterol biosynthesis pathway to be transcriptionally regulated by mTOR complex 1 (mTORC1) signaling in vitro in primary neurons and in vivo in the developing cerebral cortex of the mouse. We find that these genes are shared targets of the transcription factors SREBP, SP1, and NF-Y. Prenatal as well as postnatal mTORC1 inhibition downregulated expression of these genes which directly translated into reduced cholesterol levels, pointing towards a substantial metabolic function of the mTORC1 signaling cascade. Altogether, our results indicate that mTORC1 is an essential transcriptional regulator of the expression of sterol/cholesterol biosynthesis genes in the developing brain. Altered expression of these genes may be an important factor contributing to the pathogenesis of neurodevelopmental disorders associated with dysregulated mTOR signaling.


Asunto(s)
Colesterol/genética , Neuronas/metabolismo , Proteínas Quinasas/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR/genética , Animales , Autofagia/genética , Factor de Unión a CCAAT/genética , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Colesterol/biosíntesis , Regulación del Desarrollo de la Expresión Génica/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Neurogénesis/genética , Cultivo Primario de Células , Transducción de Señal/genética , Transcripción Genética/genética
15.
Proc Natl Acad Sci U S A ; 114(19): 4863-4868, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28432182

RESUMEN

The applicability of many computational approaches is dwelling on the identification of reduced models defined on a small set of collective variables (colvars). A methodology for scalable probability-preserving identification of reduced models and colvars directly from the data is derived-not relying on the availability of the full relation matrices at any stage of the resulting algorithm, allowing for a robust quantification of reduced model uncertainty and allowing us to impose a priori available physical information. We show two applications of the methodology: (i) to obtain a reduced dynamical model for a polypeptide dynamics in water and (ii) to identify diagnostic rules from a standard breast cancer dataset. For the first example, we show that the obtained reduced dynamical model can reproduce the full statistics of spatial molecular configurations-opening possibilities for a robust dimension and model reduction in molecular dynamics. For the breast cancer data, this methodology identifies a very simple diagnostics rule-free of any tuning parameters and exhibiting the same performance quality as the state of the art machine-learning applications with multiple tuning parameters reported for this problem.

16.
PLoS Comput Biol ; 12(1): e1004703, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26815455

RESUMEN

Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.


Asunto(s)
Cationes/metabolismo , Homeostasis/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/fisiología , Algoritmos , Cationes/química , Biología Computacional , Canales Iónicos/química , Canales Iónicos/metabolismo , Termodinámica
17.
Proc Natl Acad Sci U S A ; 111(41): 14651-6, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267630

RESUMEN

Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD.

18.
Sci Data ; 11(1): 545, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806530

RESUMEN

Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.


Asunto(s)
Encéfalo , Primates , ARN Largo no Codificante , Animales , Humanos , Encéfalo/metabolismo , Gorilla gorilla/genética , Hylobates/genética , Pan troglodytes/genética , Primates/genética , ARN Largo no Codificante/genética , Especificidad de la Especie
19.
iScience ; 27(7): 110160, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38989456

RESUMEN

Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.

20.
Commun Biol ; 7(1): 1366, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39433948

RESUMEN

microRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages. miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation. As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs. Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development.


Asunto(s)
Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Ratones , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Redes Reguladoras de Genes , Neuronas/metabolismo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA