Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Inorg Chem ; 63(5): 2401-2417, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38265361

RESUMEN

As cancer cells exhibit an increased uptake of iron, targeting the interaction with iron has become a straightforward strategy in the fight against cancer. This work comprehensively characterizes the chemical properties of 6-methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-b]indole (VLX600), a clinically investigated iron chelator, in solution. Its protonation processes, lipophilicity, and membrane permeability as well as its complexation with essential metal ions were investigated using UV-visible, electron paramagnetic resonance, and NMR spectroscopic and computational methods. Formation constants revealed the following order of metal binding affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2], [Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were elucidated by single-crystal X-ray diffraction. Redox properties of the iron complexes characterized by cyclic voltammetry showed strong preference of VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with IC50 values ranging from 0.039 to 0.51 µM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions.


Asunto(s)
Complejos de Coordinación , Compuestos Férricos , Hidrazonas , Triazoles , Humanos , Cobre/farmacología , Cobre/química , Metales/química , Hierro/química , Iones , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Quelantes del Hierro/farmacología , Compuestos Ferrosos
2.
Langmuir ; 37(10): 3057-3066, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33645991

RESUMEN

The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.

3.
J Am Chem Soc ; 142(52): 21595-21614, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337148

RESUMEN

Metal-halide perovskites transformed optoelectronics research and development during the past decade. They have also gained a foothold in photocatalytic and photoelectrochemical processes recently, but their sensitivity to the most commonly applied solvents and electrolytes together with their susceptibility to photocorrosion hinders such applications. Understanding the elementary steps of photocorrosion of these materials can aid the endeavor of realizing stable devices. In this Perspective, we discuss both thermodynamic and kinetic aspects of photocorrosion processes occurring at the interface of perovskite photocatalysts and photoelectrodes with different electrolytes. We show how combined in situ and operando electrochemical techniques can reveal the underlying mechanisms. Finally, we also discuss emerging strategies to mitigate photocorrosion (such as surface protection, materials and electrolyte engineering, etc.).

4.
J Org Chem ; 85(8): 5158-5172, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32189503

RESUMEN

According to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by 1H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography. The experimental results are further confirmed by theoretical studies including the calculation of several aromaticity indices (NICS, ACID, HOMA, FLU, MCI). In the case of the angular molecule, double bond-localization within the connecting six-membered ring resulted in reduced antiaromaticity of both the BCB and pentalene subunits, while the linear structure provided a competitive situation for the two unequal [4n]π subunits. We found that in the latter case the BCB unit alleviated its unfavorable antiaromaticity more efficiently, leaving the pentalene with strong antiaromaticity. Thus, a reversed structure-antiaromaticity relationship when compared to aceno-pentalenes was achieved.

5.
J Am Chem Soc ; 141(27): 10812-10820, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31259546

RESUMEN

Halide ion mobility in metal halide perovskites remains an intriguing phenomenon, influencing their optical and photovoltaic properties. Selective injection of holes through electrochemical anodic bias has allowed us to probe the effect of hole trapping at iodide (0.9 V) and bromide (1.15 V) in mixed halide perovskite (CH3NH3PbBr1.5I1.5) films. Upon trapping holes at the iodide site, the iodide gradually gets expelled from the mixed halide film (as iodine and/or triiodide ion), leaving behind re-formed CH3NH3PbBr3 domains. The weakening of the Pb-I bond following the hole trapping (oxidation of the iodide site) and its expulsion from the lattice in the form of iodine provided further insight into the photoinduced segregation of halide ions in mixed halide perovskite films. Transient absorption spectroscopy revealed that the iodide expulsion process leaves a defect-rich perovskite lattice behind as charge carrier recombination in the re-formed lattice is greatly accelerated. The selective mobility of iodide species provides insight into the photoinduced phase segregation and its implication in the stable operation of perovskite solar cells.

6.
J Am Chem Soc ; 140(1): 86-89, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29129051

RESUMEN

The charging of a mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

7.
Org Biomol Chem ; 16(11): 1958-1970, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29497727

RESUMEN

Two-photon (TP) uncaging of neurotransmitter molecules is the method of choice to mimic and study the subtleties of neuronal communication either in the intact brain or in slice preparations. However, the currently available caged materials are just at the limit of their usability and have several drawbacks. The local and focal nature of their use may for example be jeopardized by a high spontaneous hydrolysis rate of the commercially available compounds with increased photochemical release rate. Here, using quantum chemical modelling we show the mechanisms of hydrolysis and two-photon activation, and synthesized more effective caged compounds. Furthermore, we have developed a new enzymatic elimination method removing neurotransmitters inadvertently escaping from their compound during experiment. This method, usable both in one and two-photon experiments, allows for the use of materials with an increased rate of photochemical release. The efficiency of the new compound and the enzymatic method and of the new compound are demonstrated in neurophysiological experiments.

8.
Proc Natl Acad Sci U S A ; 108(5): 2148-53, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224413

RESUMEN

Inhibitory interneurons are considered to be the controlling units of neural networks, despite their sparse number and unique morphological characteristics compared with excitatory pyramidal cells. Although pyramidal cell dendrites have been shown to display local regenerative events--dendritic spikes (dSpikes)--evoked by artificially patterned stimulation of synaptic inputs, no such studies exist for interneurons or for spontaneous events. In addition, imaging techniques have yet to attain the required spatial and temporal resolution for the detection of spontaneously occurring events that trigger dSpikes. Here we describe a high-resolution 3D two-photon laser scanning method (Roller Coaster Scanning) capable of imaging long dendritic segments resolving individual spines and inputs with a temporal resolution of a few milliseconds. By using this technique, we found that local, NMDA receptor-dependent dSpikes can be observed in hippocampal CA1 stratum radiatum interneurons during spontaneous network activities in vitro. These NMDA spikes appear when approximately 10 spatially clustered inputs arrive synchronously and trigger supralinear integration in dynamic interaction zones. In contrast to the one-to-one relationship between computational subunits and dendritic branches described in pyramidal cells, here we show that interneurons have relatively small (∼14 µm) sliding interaction zones. Our data suggest a unique principle as to how interneurons integrate synaptic information by local dSpikes.


Asunto(s)
Potenciales de Acción , Dendritas/fisiología , Interneuronas/fisiología
9.
Sci Rep ; 14(1): 8104, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582752

RESUMEN

GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.


Asunto(s)
Calcio , Neuronas , Humanos , Calcio/metabolismo , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Señalización del Calcio , Calcio de la Dieta/metabolismo , Giro Dentado/metabolismo
10.
bioRxiv ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38854102

RESUMEN

Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with electrophysiological and optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into in-fraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG is modulated by rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

11.
EES Catal ; 2(2): 664-674, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464594

RESUMEN

Photoelectrodes with FTO/Au/Sb2Se3/TiO2/Au architecture were studied in photoelectrochemical CO2 reduction reaction (PEC CO2RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb2Se3, as confirmed by SEM images. A thin conformal layer of TiO2 was coated on the Sb2Se3 nanorods via ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts via photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO2RR yet. The photoelectrochemical performance for CO2RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm-2 at -0.57 V vs. RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H2. The presented results point toward the use of Sb2Se3-based photoelectrodes in solar CO2 conversion applications.

12.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37107249

RESUMEN

In the current work, we first present a simple synthesis method for the preparation of novel Vitamin-B1-stabilized few-atomic gold nanoclusters with few atomic layers. The formed nanostructure contains ca. eight Au atoms and shows intensive blue emissions at 450 nm. The absolute quantum yield is 3%. The average lifetime is in the nanosecond range and three main components are separated and assigned to the metal-metal and ligand-metal charge transfers. Based on the structural characterization, the formed clusters contain Au in zero oxidation state, and Vitamin B1 stabilizes the metal cores via the coordination of pyrimidine-N. The antioxidant property of the Au nanoclusters is more prominent than that of the pure Vitamin B1, which is confirmed by two different colorimetric assays. For the investigation into their potential bioactivity, interactions with bovine serum albumin were carried out and quantified. The determined stoichiometry indicates a self-catalyzed binding, which is almost the same value based on the fluorometric and calorimetric measurements. The calculated thermodynamic parameters verify the spontaneous bond of the clusters along the protein chain by hydrogen bonds and electrostatic interactions.

13.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939265

RESUMEN

Head-restrained behavioral experiments in mice allow neuroscientists to observe neural circuit activity with high-resolution electrophysiological and optical imaging tools while delivering precise sensory stimuli to a behaving animal. Recently, human and rodent studies using virtual reality (VR) environments have shown VR to be an important tool for uncovering the neural mechanisms underlying spatial learning in the hippocampus and cortex, due to the extremely precise control over parameters such as spatial and contextual cues. Setting up virtual environments for rodent spatial behaviors can, however, be costly and require an extensive background in engineering and computer programming. Here, we present a simple yet powerful system based upon inexpensive, modular, open-source hardware and software that enables researchers to study spatial learning in head-restrained mice using a VR environment. This system uses coupled microcontrollers to measure locomotion and deliver behavioral stimuli while head-restrained mice run on a wheel in concert with a virtual linear track environment rendered by a graphical software package running on a single-board computer. The emphasis on distributed processing allows researchers to design flexible, modular systems to elicit and measure complex spatial behaviors in mice in order to determine the connection between neural circuit activity and spatial learning in the mammalian brain.


Asunto(s)
Aprendizaje Espacial , Realidad Virtual , Humanos , Ratones , Animales , Percepción Espacial/fisiología , Señales (Psicología) , Hipocampo/fisiología , Mamíferos
14.
EES Catal ; 1(3): 263-273, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37213934

RESUMEN

While CO can already be produced at industrially relevant current densities via CO2 electrolysis, the selective formation of C2+ products seems challenging. CO electrolysis, in principle, can overcome this barrier, hence forming valuable chemicals from CO2 in two steps. Here we demonstrate that a mass-produced, commercially available polymeric pore sealer can be used as a catalyst binder, ensuring high rate and selective CO reduction. We achieved above 70% faradaic efficiency for C2+ products formation at j = 500 mA cm-2 current density. As no specific interaction between the polymer and the CO reactant was found, we attribute the stable and selective operation of the electrolyzer cell to the controlled wetting of the catalyst layer due to the homogeneous polymer coating on the catalyst particles' surface. These results indicate that sophistically designed surface modifiers are not necessarily required for CO electrolysis, but a simpler alternative can in some cases lead to the same reaction rate, selectivity and energy efficiency; hence the capital costs can be significantly decreased.

15.
Cell Rep ; 38(3): 110257, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045280

RESUMEN

During exploration, animals form an internal map of an environment by combining information about landmarks and the animal's movement, a process that depends on the hippocampus. The dentate gyrus (DG) is the first stage of the hippocampal circuit where self-motion ("where") and sensory cue information ("what") are integrated, but it remains unknown how DG neurons encode this information during cognitive map formation. Using two-photon calcium imaging in mice running on a treadmill along with online cue manipulation, we identify robust sensory cue responses in DG granule cells. Cue cell responses are stable, stimulus-specific, and accompanied by inhibition of nearby neurons. This demonstrates the existence of "cue cells" in addition to better characterized "place cells" in the DG. We hypothesize that the DG supports parallel channels of spatial and non-spatial information that contribute distinctly to downstream computations and affect roles of the DG in spatial navigation and episodic memory.


Asunto(s)
Señales (Psicología) , Giro Dentado/fisiología , Neuronas/fisiología , Aprendizaje Espacial/fisiología , Navegación Espacial/fisiología , Animales , Ratones
16.
Colloids Surf B Biointerfaces ; 216: 112531, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35525228

RESUMEN

Antioxidant colloids were developed via controlled heteroaggregation of cerium oxide nanoparticles (CeO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads. Positively charged CeO2 NPs were directly immobilized onto SL particles of opposite surface charge via electrostatic attraction (SL/Ce composite), while negatively charged CeO2 NPs were initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte and then, aggregated with the SL particles (SPCe composite). The PDADMAC served to induce a charge reversal on CeO2 NPs, while the SL support prevented nanoparticle aggregation under conditions, where the dispersions of bare CeO2 NPs were unstable. Both SL/Ce and SPCe showed enhanced radical scavenging activity compared to bare CeO2 NPs and were found to mimic peroxidase enzymes. The results demonstrate that SL beads are suitable supports to formulate CeO2 particles and to achieve remarkable dispersion storage stability. The PDADMAC functionalization and immobilization of CeO2 NPs neither compromised the peroxidase-like activity nor the radical scavenging potential. The obtained SL/Ce and SPCe artificial enzymes are foreseen to be excellent antioxidant agents in various applications in the biomedical, food, and cosmetic industries.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Antioxidantes , Coloides , Microesferas , Peroxidasas
17.
ACS Catal ; 12(16): 10127-10140, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36033366

RESUMEN

N-doped carbon (N-C) materials are increasingly popular in different electrochemical and catalytic applications. Due to the structural and stoichiometric diversity of these materials, however, the role of different functional moieties is still controversial. We have synthesized a set of N-C catalysts, with identical morphologies (∼27 nm pore size). By systematically changing the precursors, we have varied the amount and chemical nature of N-functions on the catalyst surface. The CO2 reduction (CO2R) properties of these catalysts were tested in both electrochemical (EC) and thermal catalytic (TC) experiments (i.e., CO2 + H2 reaction). CO was the major CO2R product in all cases, while CH4 appeared as a minor product. Importantly, the CO2R activity changed with the chemical composition, and the activity trend was similar in the EC and TC scenarios. The activity was correlated with the amount of different N-functions, and a correlation was found for the -NO x species. Interestingly, the amount of this species decreased radically during EC CO2R, which was coupled with the performance decrease. The observations were rationalized by the adsorption/desorption properties of the samples, while theoretical insights indicated a similarity between the EC and TC paths.

18.
ACS Nano ; 16(10): 16668-16676, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36178781

RESUMEN

We measured the exciton dynamics in van der Waals heterojunctions of transition metal dichalcogenides (TMDCs) and organic semiconductors (OSs). TMDCs and OSs are semiconducting materials with rich and highly diverse optical and electronic properties. Their heterostructures, exhibiting van der Waals bonding at their interfaces, can be utilized in the field of optoelectronics and photovoltaics. Two types of heterojunctions, MoS2-pentacene and WSe2-pentacene, were prepared by layer transfer of 20 nm pentacene thin films as well as MoS2 and WSe2 monolayer crystals onto Au surfaces. The samples were studied by means of transient absorption spectroscopy in the reflectance mode. We found that A-exciton decay by hole transfer from MoS2 to pentacene occurs with a characteristic time of 21 ± 3 ps. This is slow compared to previously reported hole transfer times of 6.7 ps in MoS2-pentacene junctions formed by vapor deposition of pentacene molecules onto MoS2 on SiO2. The B-exciton decay in WSe2 shows faster hole transfer rates for WSe2-pentacene heterojunctions, with a characteristic time of 7 ± 1 ps. The A-exciton in WSe2 also decays faster due to the presence of a pentacene overlayer; however, fitting the decay traces did not allow for the unambiguous assignment of the associated decay time. Our work provides important insights into excitonic dynamics in the growing field of TMDC-OS heterojunctions.

19.
Nat Cell Biol ; 3(7): 643-9, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11433296

RESUMEN

The XMAP215/ch-TOG/Msps family of microtubule-associated proteins (MAPs) promote microtubule growth in vitro and are concentrated at centrosomes in vivo. We show here that Msps (mini-spindles protein) interacts with the centrosomal protein D-TACC, and that this interaction strongly influences microtubule behaviour in Drosophila embryos. If D-TACC levels are reduced, Msps does not concentrate at the centrosomes efficiently and the centrosomal microtubules appear to be destabilized. If D-TACC levels are increased, both D-TACC and Msps accumulate around the centrosomes/spindle poles, and the centrosomal microtubules appear to be stabilized. We show that the interaction between D-TACC and Msps is evolutionarily conserved. We propose that D-TACC and Msps normally cooperate to stabilize centrosomal microtubules by binding to their minus ends and binding to their plus ends as they grow out from the centrosome.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila , Proteínas Asociadas a Microtúbulos/farmacología , Microtúbulos/efectos de los fármacos , Proteínas de Xenopus , Animales , Western Blotting , Centrosoma/ultraestructura , Clonación Molecular , Drosophila/embriología , Interacciones Farmacológicas , Evolución Molecular , Humanos , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Transfección
20.
ACS Mater Au ; 1(2): 157-168, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34841423

RESUMEN

Titanium dioxide (TiO2) is often employed as a light absorber, electron-transporting material and catalyst in different energy and environmental applications. Heat treatment in a hydrogen atmosphere generates black TiO2 (b-TiO2), allowing better absorption of visible light, which placed this material in the forefront of research. At the same time, hydrogen treatment also introduces trap states, and the question of whether these states are beneficial or harmful is rather controversial and depends strongly on the application. We employed combined surface science and in situ electrochemical methods to scrutinize the effect of these states on the photoelectrochemical (PEC), electrocatalytic (EC), and charge storage properties of b-TiO2. Lower photocurrents were recorded with the increasing number of defect sites, but the EC and charge storage properties improved. We also found that the PEC properties can be enhanced by trap state passivation through Li+ ion intercalation in a two-step process. This passivation can only be achieved by utilizing small size cations in the electrolyte (Li+) but not with bulky ones (Bu4N+). The presented insights will help to resolve some of the controversies in the literature and also provide rational trap state engineering strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA