RESUMEN
The Minnesota Department of Health investigated a coronavirus disease 2019 (COVID-19) outbreak at a fitness center in Olmsted County, Minnesota. Twenty-three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections (5 employees and 18 members) were identified. An epidemiological investigation supported by whole genome sequencing demonstrated that transmission of SARS-CoV-2 occurred at the fitness center despite following recommended prevention strategies.
Asunto(s)
COVID-19 , Centros de Acondicionamiento , Brotes de Enfermedades , Humanos , Minnesota/epidemiología , SARS-CoV-2RESUMEN
Steroid hormones act as important developmental switches, and their nuclear receptors regulate many genes. However, few hormone-dependent enhancers have been characterized, and important aspects of their sequence architecture, cell-type-specific activating and repressing functions, or the regulatory roles of their chromatin structure have remained unclear. We used STARR-seq, a recently developed enhancer-screening assay, and ecdysone signaling in two different Drosophila cell types to derive genome-wide hormone-dependent enhancer-activity maps. We demonstrate that enhancer activation depends on cis-regulatory motif combinations that differ between cell types and can predict cell-type-specific ecdysone targeting. Activated enhancers are often not accessible prior to induction. Enhancer repression following hormone treatment seems independent of receptor motifs and receptor binding to the enhancer, as we show using ChIP-seq, but appears to rely on motifs for other factors, including Eip74. Our strategy is applicable to study signal-dependent enhancers for different pathways and across organisms.
Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Ecdisona/farmacología , Elementos de Facilitación Genéticos/efectos de los fármacos , Represión Epigenética/efectos de los fármacos , Motivos de Nucleótidos/efectos de los fármacos , Ovario/efectos de los fármacos , Animales , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Ovario/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Máquina de Vectores de Soporte , Activación Transcripcional/efectos de los fármacos , TransfecciónRESUMEN
Localized protein translation is critical in many biological contexts, particularly in highly polarized cells, such as neurons, to regulate gene expression in a spatiotemporal manner. The cytoplasmic polyadenylation element-binding (CPEB) family of RNA-binding proteins has emerged as a key regulator of mRNA transport and local translation required for early embryonic development, synaptic plasticity, and long-term memory (LTM). Drosophila Orb and Orb2 are single members of the CPEB1 and CPEB2 subfamilies of the CPEB proteins, respectively. At present, the identity of the mRNA targets they regulate is not fully known, and the binding specificity of the CPEB2 subfamily is a matter of debate. Using transcriptome-wide UV cross-linking and immunoprecipitation, we define the mRNA-binding sites and targets of Drosophila CPEBs. Both Orb and Orb2 bind linear cytoplasmic polyadenylation element-like sequences in the 3' UTRs of largely overlapping target mRNAs, with Orb2 potentially having a broader specificity. Both proteins use their RNA-recognition motifs but not the Zinc-finger region for RNA binding. A subset of Orb2 targets is translationally regulated in cultured S2 cells and fly head extracts. Moreover, pan-neuronal RNAi knockdown of these targets suggests that a number of these targets are involved in LTM. Our results provide a comprehensive list of mRNA targets of the two CPEB proteins in Drosophila, thus providing insights into local protein synthesis involved in various biological processes, including LTM.
RESUMEN
The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.
Asunto(s)
Mamíferos/genética , Familia de Multigenes , ARN Interferente Pequeño/genética , Animales , Evolución Molecular , Mamíferos/clasificaciónRESUMEN
Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers' cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.
Asunto(s)
Repeticiones de Dinucleótido , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Motivos de Nucleótidos , Animales , Secuencia de Bases , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Biológicos , Especificidad de Órganos/genética , Factores de Transcripción/metabolismoRESUMEN
In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.
Asunto(s)
Empalme Alternativo/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Animales , Drosophila , Drosophila melanogasterRESUMEN
In liver, most metabolic pathways are under circadian control, and hundreds of protein-encoding genes are thus transcribed in a cyclic fashion. Here we show that rhythmic transcription extends to the locus specifying miR-122, a highly abundant, hepatocyte-specific microRNA. Genetic loss-of-function and gain-of-function experiments have identified the orphan nuclear receptor REV-ERBalpha as the major circadian regulator of mir-122 transcription. Although due to its long half-life mature miR-122 accumulates at nearly constant rates throughout the day, this miRNA is tightly associated with control mechanisms governing circadian gene expression. Thus, the knockdown of miR-122 expression via an antisense oligonucleotide (ASO) strategy resulted in the up- and down-regulation of hundreds of mRNAs, of which a disproportionately high fraction accumulates in a circadian fashion. miR-122 has previously been linked to the regulation of cholesterol and lipid metabolism. The transcripts associated with these pathways indeed show the strongest time point-specific changes upon miR-122 depletion. The identification of Pparbeta/delta and the peroxisome proliferator-activated receptor alpha (PPARalpha) coactivator Smarcd1/Baf60a as novel miR-122 targets suggests an involvement of the circadian metabolic regulators of the PPAR family in miR-122-mediated metabolic control.
Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Hígado/metabolismo , MicroARNs/metabolismo , Animales , Ritmo Circadiano/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Genoma/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de TiempoRESUMEN
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP197 Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
Asunto(s)
Enterovirus Humano A/fisiología , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/virología , Neuronas/virología , Proteínas Estructurales Virales/genética , Acoplamiento Viral , Adulto , Sustitución de Aminoácidos , Animales , Líquido del Lavado Bronquioalveolar/virología , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , ADN Viral/genética , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Heces/virología , Humanos , Huésped Inmunocomprometido , Masculino , Mutación , Neuroblastoma , Células Vero , Proteínas Estructurales Virales/sangre , Proteínas Estructurales Virales/líquido cefalorraquídeo , Proteínas Estructurales Virales/inmunologíaRESUMEN
p53 is known as the guardian of the genome and is one of the most important tumor-suppressors. It is inactivated in most tumors, either via tumor protein p53 (TP53) gene mutation or copy number amplification of key negative regulators, e.g., mouse double minute 2 (MDM2). Compounds that bind to the MDM2 protein and disrupt its interaction with p53 restore p53 tumor suppressor activity, thereby promoting cell cycle arrest and apoptosis. Previous clinical experience with MDM2-p53 protein-protein interaction antagonists (MDM2-p53 antagonists) have demonstrated that thrombocytopenia and neutropenia represent on-target dose-limiting toxicities that might restrict their therapeutic utility. Dosing less frequently, while maintaining efficacious exposure, represents an approach to mitigate toxicity and improve the therapeutic window of MDM2-p53 antagonists. However, to achieve this, a molecule possessing excellent potency and ideal pharmacokinetic properties is required. Here, we present the discovery and characterization of brigimadlin (BI 907828), a novel, investigational spiro-oxindole MDM2-p53 antagonist. Brigimadlin exhibited high bioavailability and exposure, as well as dose-linear pharmacokinetics in preclinical models. Brigimadlin treatment restored p53 activity and led to apoptosis induction in preclinical models of TP53 wild-type, MDM2-amplified cancer. Oral administration of brigimadlin in an intermittent dosing schedule induced potent tumor growth inhibition in several TP53 wild-type, MDM2-amplified xenograft models. Exploratory clinical pharmacokinetic studies (NCT03449381) showed high systemic exposure and a long plasma elimination half-life in cancer patients who received oral brigimadlin. These findings support the continued clinical evaluation of brigimadlin in patients with MDM2-amplified cancers, such as dedifferentiated liposarcoma.
RESUMEN
The clinical effectiveness of KRASG12C inhibitors (G12Ci) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. Here, we identified targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 as a strategy to improve responses to G12Ci treatment. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. G12Ci drug tolerant persister (DTP) cells showed up to a 3-fold enrichment of tumor initiating cells (TIC), suggestive of a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limited the clinical effectiveness of G12Ci, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci, consistent with clinical G12Ci resistance seen with these co-mutations. Treatment with SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. Together, these data suggest that targeting SOS1 could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.
RESUMEN
Neurofibromin (NF1) is a negative regulator of RAS signaling, frequently mutated in cancer. NF1-mutant melanoma is a highly malignant tumor for which targeted therapies are lacking. Here, we use biochemical and pharmacological assays on patient-derived models and isogenic cell lines to identify potential pharmacologic targets, revealing that NF1-null melanomas are dependent on RAS activation and that MEK inhibition relieves ERK-dependent negative feedback, increasing RAS signaling. MEK inhibition with avutometinib abrogates the adaptive rebound in ERK signaling, but the antitumor effects are limited. However, concurrent inhibition of MEK and SOS1 abrogates ERK activation, induces cell death, and suppresses tumor growth. In contrast to the NF1-deficient setting, concurrent SOS1 and SOS2 depletion is required to completely inhibit RAS signaling in NF1 wild-type cells. In sum, our data provide a mechanistic rationale for enhancing the therapeutic efficacy of MEK inhibitors by exploiting the lower residual SOS activity in NF1-null tumor cells.
RESUMEN
Mutations in HER2 occur in 2-4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2 mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent anti-tumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors, without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation) thus supporting the ongoing clinical development of zongertinib.
RESUMEN
Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
Asunto(s)
Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas p21(ras) , Proteína SOS1 , Proteína SOS1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Acetonitrilos , Piperazinas , PirimidinasRESUMEN
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Asunto(s)
Genoma Bacteriano/genética , Genoma de los Insectos/genética , Pediculus/genética , Pediculus/microbiología , Animales , Enterobacteriaceae/genética , Genes Bacterianos/genética , Genes de Insecto/genética , Genómica/métodos , Humanos , Infestaciones por Piojos/parasitología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , SimbiosisRESUMEN
GDF15 has recently emerged as a key driver of the development of various disease conditions including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation in human cardiomyocytes and cancer cell lines and analyzed in-house and public gene signature databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug- and cell type-specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of anticancer drugs and patients for precision medicine.
Asunto(s)
Caquexia , Neoplasias , Humanos , Miocitos Cardíacos/metabolismo , Medicina de Precisión , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genéticaRESUMEN
Clinical effectiveness of KRAS G12C inhibitors (G12Cis) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. We found that targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 both enhanced the potency of and delayed resistance to G12Ci treatment, but the extent of SOS1i effectiveness was modulated by both SOS2 expression and the specific mutational landscape. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. Survival of drug-tolerant persister (DTP) cells within the heterogeneous tumor population and/or acquired mutations that reactivate RTK/RAS signaling can lead to outgrowth of tumor initiating cells (TICs) that drive therapeutic resistance. G12Ci drug tolerant persister cells showed a 2-3-fold enrichment of TICs, suggesting that these could be a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limits the clinical effectiveness of G12Cis, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci in situ. SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. These data suggest that SOS1i could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.
RESUMEN
Efforts to improve the anti-tumor response to KRASG12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRASG12C inhibitor (KRASG12Ci) to those induced by KRASG12Ci alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASG12Ci induces an anti-tumor response stronger than that observed with KRASG12Ci alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRASG12Ci treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRASG12Ci-resistant CRC models. Our findings position KRASG12C plus SOS1 inhibition therapy as a promising strategy for treating both KRASG12C-mutated tumors as well as for addressing acquired resistance to KRASG12Ci.
RESUMEN
Human rhinoviruses (HRVs) and enteroviruses (HEVs), two important human pathogens, are non-enveloped, positive-sense RNA viruses of the genus Enterovirus within the family Picornaviridae. Intraspecies recombination is known as a driving force for enterovirus and, to a lesser extent, rhinovirus evolution. Interspecies recombination is much less frequent among circulating strains, and supporting evidence for such recombination is limited to ancestral events, as shown by recent phylogenetic analyses reporting ancient HRV-A/HRV-C, HEV-A/HEV-C and HEV-A/HEV-D recombination mainly at the 5'-untranslated region (5' UTR)-polyprotein junction. In this study, chimeric genomes were artificially generated using the 5' UTR from two different clinical HRV-C strains (HRV-Ca and HRV-Cc), an HRV-B strain (HRV-B37) and an HEV-A strain (HEV-A71), and the remaining part of the genome from an HRV-A strain (HRV-A16). Whilst the chimeric viruses were easily propagated in cell culture, the wild-type HRV-A16 retained a replication advantage, both individually and in competition experiments. Assessment of protein synthesis ability did not show a correlation between translation and replication efficiencies. These results reflect the interchangeability of the 5' UTR, including its functional RNA structural elements implicated in both genome translation and replication among different enterovirus species. The 5' UTR-polyprotein junction therefore represents a theoretic interspecies recombination breakpoint. This recombination potential is probably restricted by the need for co-infection opportunities and the requirement for the progeny chimera to outcompete the parental genomes' fitness, explaining the rare occurrence of such events in vivo.
Asunto(s)
Enterovirus/genética , Infecciones por Picornaviridae/virología , Recombinación Genética , Rhinovirus/genética , Regiones no Traducidas 5' , Línea Celular , Enterovirus/clasificación , Enterovirus/fisiología , Humanos , Datos de Secuencia Molecular , Filogenia , Rhinovirus/clasificación , Rhinovirus/fisiología , Replicación ViralRESUMEN
KRAS is the most frequently mutated oncogene, harboring mutations in approximately one in seven cancers. Allele-specific KRASG12C inhibitors are currently changing the treatment paradigm for patients with KRASG12C-mutated non-small cell lung cancer and colorectal cancer. The success of addressing a previously elusive KRAS allele has fueled drug discovery efforts for all KRAS mutants. Pan-KRAS drugs have the potential to address broad patient populations, including KRASG12D-, KRASG12V-, KRASG13D-, KRASG12R-, and KRASG12A-mutant or KRAS wild-type-amplified cancers, as well as cancers with acquired resistance to KRASG12C inhibitors. Here, we review actively pursued allele-specific and pan-KRAS inhibition strategies and their potential utility. SIGNIFICANCE: Mutant-selective KRASG12C inhibitors target a fraction (approximately 13.6%) of all KRAS-driven cancers. A broad arsenal of KRAS drugs is needed to comprehensively conquer KRAS-driven cancers. Conceptually, we foresee two future classes of KRAS medicines: mutant-selective KRAS drugs targeting individual variant alleles and pan-KRAS therapeutics targeting a broad range of KRAS alterations.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Mutación , Oncogenes , Medicina de Precisión , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
Importance: Characterizing rates of SARS-CoV-2 infection among vaccinated and unvaccinated persons with the same exposure is critical to understanding the association of vaccination with the risk of infection with the Delta variant. Additionally, evidence of Delta variant transmission by children to vaccinated adults has important public health implications. Objective: To characterize transmission and infection of SARS-CoV-2 among vaccinated and unvaccinated attendees of an indoor wedding reception. Design, Setting, and Participants: This cohort study included attendees at an indoor wedding reception in Minnesota in July 2021. Data were collected from REDCap surveys and routine surveillance interviews. The full list of attendees and a partial list of emails were obtained. Fifty-seven attendees completed the emailed survey. Eighteen additional attendees were identified from the state health department COVID-19 surveillance database. Exposures: Attendance at an indoor event. Main Outcomes and Measures: Risk of SARS-CoV-2 infection among vaccinated and unvaccinated attendees, identification of an index case, whole genome sequencing (WGS) to identify the COVID-19 variant, understanding of transmission patterns, and assessment of secondary transmission. The primary case definition was an individual with a positive SARS-CoV-2 test who attended the wedding in the 14 days prior to their illness. Results: Data were gathered for 75 attendees (mean [SE] age, 37.5 [13.7] years; 57 [76%] female individuals), of whom 56 (75%) were fully vaccinated, 4 (5%) were partially vaccinated, and 15 (20%) were unvaccinated. Of 62 attendees who were tested, 29 (47%) tested positive, including 16 of 46 fully vaccinated attendees (35%), 2 of 4 partially vaccinated attendees (50%), and 11 of 12 unvaccinated attendees (92%). Being unvaccinated was associated with a higher risk of infection compared with being vaccinated (risk ratio, 2.64; 95% CI, 1.71-4.06; P = .001). One unvaccinated adult required hospitalization. An unvaccinated child who was symptomatic on the event date was identified as the index case. Eleven specimens were available for WGS. All sequenced specimens were closely related and were identified as the Delta variant. WGS supported secondary transmission from a vaccinated individual with SARS-CoV-2. Conclusions and Relevance: This cohort study identified a COVID-19 Delta variant outbreak at an indoor event despite a high proportion of vaccinated attendees. It found that vaccination was associated with a reduced risk of infection.