Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4884, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849421

RESUMEN

Coronary artery disease (CAD) is the leading cause of death among adults worldwide. Accurate risk stratification can support optimal lifetime prevention. Current methods lack the ability to incorporate new information throughout the life course or to combine innate genetic risk factors with acquired lifetime risk. We designed a general multistate model (MSGene) to estimate age-specific transitions across 10 cardiometabolic states, dependent on clinical covariates and a CAD polygenic risk score. This model is designed to handle longitudinal data over the lifetime to address this unmet need and support clinical decision-making. We analyze longitudinal data from 480,638 UK Biobank participants and compared predicted lifetime risk with the 30-year Framingham risk score. MSGene improves discrimination (C-index 0.71 vs 0.66), age of high-risk detection (C-index 0.73 vs 0.52), and overall prediction (RMSE 1.1% vs 10.9%), in held-out data. We also use MSGene to refine estimates of lifetime absolute risk reduction from statin initiation. Our findings underscore our multistate model's potential public health value for accurate lifetime CAD risk estimation using clinical factors and increasingly available genetics toward earlier more effective prevention.


Asunto(s)
Enfermedad de la Arteria Coronaria , Registros Electrónicos de Salud , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Registros Electrónicos de Salud/estadística & datos numéricos , Anciano , Medición de Riesgo/métodos , Factores de Riesgo , Adulto , Predisposición Genética a la Enfermedad , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Reino Unido/epidemiología , Estudios Longitudinales , Herencia Multifactorial/genética
2.
medRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39040165

RESUMEN

In Finland the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We performed a genome-wide association study for orofacial clefts, which include CL/P and CP, in the Finnish population. We identified rs570516915, a single nucleotide polymorphism that is highly enriched in Finns and Estonians, as being strongly associated with CP ( P = 5.25 × 10 -34 , OR = 8.65, 95% CI 6.11-12.25), but not with CL/P ( P = 7.2 × 10 -5 ), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland ( P = 8.82 × 10 -28 ) and Estonia ( P = 1.25 × 10 -5 ). The risk allele of rs570516915 disrupts a conserved binding site for the transcription factor IRF6 within a previously characterized enhancer upstream of the IRF6 gene. Through reporter assay experiments we found that the risk allele of rs570516915 diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6 , suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.

3.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986972

RESUMEN

Currently, coronary artery disease (CAD) is the leading cause of death among adults worldwide. Accurate risk stratification can support optimal lifetime prevention. We designed a novel and general multistate model (MSGene) to estimate age-specific transitions across 10 cardiometabolic states, dependent on clinical covariates and a CAD polygenic risk score. MSGene supports decision making about CAD prevention related to any of these states. We analyzed longitudinal data from 480,638 UK Biobank participants and compared predicted lifetime risk with the 30-year Framingham risk score. MSGene improved discrimination (C-index 0.71 vs 0.66), age of high-risk detection (C-index 0.73 vs 0.52), and overall prediction (RMSE 1.1% vs 10.9%), with external validation. We also used MSGene to refine estimates of lifetime absolute risk reduction from statin initiation. Our findings underscore the potential public health value of our novel multistate model for accurate lifetime CAD risk estimation using clinical factors and increasingly available genetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA