Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Bioconjug Chem ; 26(8): 1571-81, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26106949

RESUMEN

Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field.


Asunto(s)
Tejido Adiposo/citología , Celulosa/química , Ácido Hialurónico/química , Hidrogeles/administración & dosificación , Células Madre Mesenquimatosas/citología , Nanopartículas/química , Ingeniería de Tejidos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
2.
Adv Healthc Mater ; 5(11): 1364-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27059281

RESUMEN

Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE.


Asunto(s)
Celulosa/química , Nanofibras/química , Nanopartículas/química , Tendones/efectos de los fármacos , Anisotropía , Materiales Biocompatibles/química , Caproatos/química , Células Cultivadas , Quitosano/química , Humanos , Lactonas/química , Nanocompuestos/química , Polímeros/química , Tenocitos/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido
3.
Int J Cardiol ; 176(3): 994-1000, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25227892

RESUMEN

BACKGROUND: Long-term exposure to microgravity during space flight may lead to cardiac remodeling and rhythm disturbances. In mice, hindlimb unloading (HU) mimics the effects of microgravity and stimulates physiological adaptations, including cardiovascular deconditioning. Recent studies have demonstrated an important role played by changes in intracellular Ca handling in the pathogenesis of heart failure and arrhythmia. In this study, we tested the hypothesis that cardiac remodeling following HU in mice involves abnormal intracellular Ca regulation through the cardiac ryanodine receptor (RyR2). METHODS AND RESULTS: Mice were subjected to HU by tail suspension for 28 to 56 days in order to induce cardiac remodeling (n=15). Control mice (n=19) were treated equally, with the exception of tail suspension. Echocardiography revealed cardiac enlargement and depressed contractility starting at 28 days post-HU versus control. Moreover, mice were more susceptible to pacing-induced ventricular arrhythmias after HU. Ventricular myocytes isolated from HU mice exhibited an increased frequency of spontaneous sarcoplasmic reticulum (SR) Ca release events and enhanced SR Ca leak via RyR2. Western blotting revealed increased RyR2 phosphorylation at S2814, and increased CaMKII auto-phosphorylation at T287, suggesting that CaMKII activation of RyR2 might underlie enhanced SR Ca release in HU mice. CONCLUSION: These data suggest that abnormal intracellular Ca handling, likely due to increased CaMKII phosphorylation of RyR2, plays a role in cardiac remodeling following simulated microgravity in mice.


Asunto(s)
Arritmias Cardíacas/etiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Simulación de Ingravidez/efectos adversos , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Suspensión Trasera , Ratones , Fosforilación/fisiología , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA