Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gastroenterology ; 143(2): 408-17.e2, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22609381

RESUMEN

BACKGROUND & AIMS: The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. METHODS: cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. RESULTS: Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). CONCLUSIONS: 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Células Enterocromafines/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Receptor de Serotonina 5-HT2A/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/fisiología , Animales , Colina O-Acetiltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Ketanserina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas Muscarínicos/administración & dosificación , Escopolamina/administración & dosificación , Serotonina/metabolismo , Antagonistas de la Serotonina/administración & dosificación , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Triptófano Hidroxilasa/deficiencia
2.
J Biol Chem ; 286(8): 6500-9, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21156805

RESUMEN

Protein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes. The α(1)-adrenergic receptor agonist norepinephrine selectively activates PKD1, thrombin and PDGF selectively activate PKD2, and endothelin-1 and PMA activate both PKD1 and PKD2. PKC activity is implicated in the α(1)-adrenergic receptor pathway that activates PKD1 and the thrombin- and PDGF-dependent pathways that activate PKD2. Endothelin-1 activates PKD via both rapid PKC-dependent and more sustained PKC-independent mechanisms. The functional consequences of PKD activation were assessed by tracking phosphorylation of CREB and cardiac troponin I (cTnI), two physiologically relevant PKD substrates in cardiomyocytes. We show that overexpression of an activated PKD1-S744E/S748E transgene increases CREB-Ser(133) and cTnI-Ser(23)/Ser(24) phosphorylation, but agonist-dependent pathways that activate native PKD1 or PKD2 selectively increase CREB-Ser(133) phosphorylation; there is no associated increase in cTnI-Ser(23)/Ser(24) phosphorylation. Gene silencing studies provide unanticipated evidence that PKD1 down-regulation leads to a compensatory increase in PKD2 activity and that down-regulation of PKD1 (alone or in combination with PKD2) leads to an increase in CREB-Ser(133) phosphorylation. Collectively, these studies identify distinct roles for native PKD1 and PKD2 enzymes in stress-dependent pathways that influence cardiac remodeling and the progression of heart failure.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Proteínas Musculares/metabolismo , Miocitos Cardíacos/enzimología , Norepinefrina/farmacología , Proteína Quinasa C/metabolismo , Sustitución de Aminoácidos , Animales , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Proteínas Musculares/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteína Quinasa C/genética , Ratas , Ratas Wistar
3.
Circ Res ; 104(5): 660-9, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19168439

RESUMEN

p66Shc is an adapter protein that is induced by hypertrophic stimuli and has been implicated as a major regulator of reactive oxygen species (ROS) production and cardiovascular oxidative stress responses. This study implicates p66Shc in an alpha(1)-adrenergtic receptor (alpha(1)-AR) pathway that requires the cooperative effects of protein kinase (PK)Cepsilon and PKCdelta and leads to AKT-FOXO3a phosphorylation in cardiomyocytes. alpha(1)-ARs promote p66Shc-YY(239/240) phosphorylation via a ROS-dependent mechanism that is localized to caveolae and requires epidermal growth factor receptor (EGFR) and PKCepsilon activity. alpha(1)-ARs also increase p66Shc-S(36) phosphorylation via an EGFR transactivation pathway involving PKCdelta. p66Shc links alpha(1)-ARs to an AKT signaling pathway that selectively phosphorylates/inactivates FOXO transcription factors and downregulates the ROS-scavenging protein manganese superoxide dismutase (MnSOD); the alpha(1)-AR-p66Shc-dependent pathway involving AKT does not regulate GSK3. Additional studies show that RNA interference-mediated downregulation of endogenous p66Shc leads to the derepression of FOXO3a-regulated genes such as MnSOD, p27Kip1, and BIM-1. p66Shc downregulation also increases proliferating cell nuclear antigen expression and induces cardiomyocyte hypertrophy, suggesting that p66Shc exerts an antihypertrophic action in neonatal cardiomyocytes. The novel alpha(1)-AR- and ROS-dependent pathway involving p66Shc identified in this study is likely to contribute to cardiomyocyte remodeling and the evolution of heart failure.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Antibióticos Antineoplásicos/toxicidad , Apoptosis , Cardiomegalia/metabolismo , Caveolas/metabolismo , Aumento de la Célula , Células Cultivadas , Doxorrubicina/toxicidad , Receptores ErbB/metabolismo , Proteína Forkhead Box O3 , Glucógeno Sintasa Quinasa 3/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Norepinefrina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Proteínas Adaptadoras de la Señalización Shc/genética , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Factores de Tiempo , Transducción Genética
4.
Am J Physiol Cell Physiol ; 299(4): C770-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20686066

RESUMEN

Protein kinase C-δ (PKCδ) exerts important cardiac actions as a lipid-regulated kinase. There is limited evidence that PKCδ also might exert an additional kinase-independent action as a regulator of the subcellular compartmentalization of binding partners such as Shc (Src homologous and collagen), a family of adapter proteins that play key roles in growth regulation and oxidative stress responses. This study shows that native PKCδ forms complexes with endogenous Shc proteins in H(2)O(2)-treated cardiomyocytes; H(2)O(2) treatment also leads to the accumulation of PKCδ and Shc in a detergent-insoluble cytoskeletal fraction and in mitochondria. H(2)O(2)-dependent recruitment of Shc isoforms to cytoskeletal and mitochondrial fractions is amplified by wild-type-PKCδ overexpression, consistent with the notion that PKCδ acts as a signal-regulated scaffold to anchor Shc in specific subcellular compartments. However, overexpression studies with kinase-dead (KD)-PKCδ-K376R (an ATP-binding mutant of PKCδ that lacks catalytic activity) are less informative, since KD-PKCδ-K376R aberrantly localizes as a constitutively tyrosine-phosphorylated enzyme to detergent-insoluble and mitochondrial fractions of resting cardiomyocytes; relatively little KD-PKCδ-K376R remains in the cytosolic fraction. The aberrant localization and tyrosine phosphorylation patterns for KD-PKCδ-K376R do not phenocopy the properties of native PKCδ, even in cells chronically treated with GF109203X to inhibit PKCδ activity. Hence, while KD-PKCδ-K376R overexpression increases Shc localization to the detergent-insoluble and mitochondrial fractions, the significance of these results is uncertain. Our studies suggest that experiments using KD-PKCδ-K376R overexpression as a strategy to competitively inhibit the kinase-dependent actions of native PKCδ or to expose the kinase-independent scaffolding functions of PKCδ should be interpreted with caution.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos , Oxidantes/farmacología , Proteína Quinasa C-delta/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteína Quinasa C-delta/genética , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/genética , Fracciones Subcelulares/metabolismo
5.
Mol Pharmacol ; 76(4): 896-902, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19620255

RESUMEN

Reactive oxygen species (ROS) exert pleiotropic effects on a wide array of signaling proteins that regulate cellular growth and apoptosis. This study shows that long-term treatment with a low concentration of H2O2 leads to the activation of signaling pathways involving extracellular signal-regulated kinase, ribosomal protein S6 kinase, and protein kinase D (PKD) that increase cAMP binding response element protein (CREB) phosphorylation at Ser(133) in cardiomyocytes. Although CREB-Ser(133) phosphorylation typically mediates cAMP-dependent increases in CREB target gene expression, the H2O2-dependent increase in CREB-Ser(133) phosphorylation is accompanied by a decrease in CREB protein abundance and no change in Cre-luciferase reporter activity. Mutagenesis studies indicate that H2O2 decreases CREB protein abundance via a mechanism that does not require CREB-Ser(133) phosphorylation. Rather, the H2O2-dependent decrease in CREB protein is prevented by the proteasome inhibitor lactacystin, by inhibitors of mitogen-activated protein kinase kinase or protein kinase C activity, or by adenoviral-mediated delivery of a small interfering RNA that decreases PKD1 expression. A PKD1-dependent mechanism that links oxidative stress to decreased CREB protein abundance is predicted to contribute to the pathogenesis of heart failure by influencing cardiac growth and apoptosis responses.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Animales , Western Blotting , Regulación hacia Abajo/efectos de los fármacos , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Fosforilación , Proteína Quinasa C , Proteínas Quinasas/química , Ratas , Ratas Wistar , Transducción de Señal
6.
J Biol Chem ; 283(26): 17777-88, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18387943

RESUMEN

Protein kinase Cdelta (PKCdelta) activation is generally attributed to lipid cofactor-dependent allosteric activation mechanisms at membranes. However, recent studies indicate that PKCdelta also is dynamically regulated through tyrosine phosphorylation in H(2)O(2)- and phorbol 12-myristate 13-acetate (PMA)-treated cardiomyocytes. H(2)O(2) activates Src and related Src-family kinases (SFKs), which function as dual PKCdelta-Tyr(311) and -Tyr(332) kinases in vitro and contribute to H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation in cardiomyocytes and in mouse embryo fibroblasts. H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation is defective in SYF cells (deficient in SFKs) and restored by Src re-expression. PMA also promotes PKCdelta-Tyr(311) phosphorylation, but this is not associated with SFK activation or PKCdelta-Tyr(332) phosphorylation. Rather, PMA increases PKCdelta-Tyr(311) phosphorylation by delivering PKCdelta to SFK-enriched caveolae. Cyclodextrin treatment disrupts caveolae and blocks PMA-dependent PKCdelta-Tyr(311) phosphorylation, without blocking H(2)O(2)-dependent PKCdelta-Tyr(311) phosphorylation. The enzyme that acts as a PKCdelta-Tyr(311) kinase without increasing PKCdelta phosphorylation at Tyr(332) in PMA-treated cardiomyocytes is uncertain. Although in vitro kinase assays implicate c-Abl as a selective PKCdelta-Tyr(311) kinase, PMA-dependent PKCdelta-Tyr(311) phosphorylation persists in cardiomyocytes treated with the c-Abl inhibitor ST1571 and c-Abl is not detected in caveolae; these results effectively exclude a c-Abl-dependent process. Finally, we show that 1,2-dioleoyl-sn-glycerol mimics the effect of PMA to drive PKCdelta to caveolae and increase PKCdelta-Tyr(311) phosphorylation, whereas G protein-coupled receptor agonists such as norepinephrine and endothelin-1 do not. These results suggest that norepinephrine and endothelin-1 increase 1,2-dioleoyl-sn-glycerol accumulation and activate PKCdelta exclusively in non-caveolae membranes. Collectively, these results identify stimulus-specific PKCdelta localization and tyrosine phosphorylation mechanisms that could be targeted for therapeutic advantage.


Asunto(s)
Miocitos Cardíacos/metabolismo , Proteína Quinasa C-delta/química , Acetato de Tetradecanoilforbol/química , Tirosina/química , Animales , Ciclodextrinas/farmacología , Endotelinas/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Miocardio/metabolismo , Norepinefrina/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Ratas , Ratas Wistar
7.
J Biol Chem ; 282(32): 23631-8, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17569658

RESUMEN

Protein kinase Cdelta (PKCdelta) is unusual among AGC kinases in that it does not require activation loop (Thr(505)) phosphorylation for catalytic competence. Nevertheless, Thr(505) phosphorylation has been implicated as a mechanism that influences PKCdelta activity. This study examines the controls of PKCdelta-Thr(505) phosphorylation in cardiomyocytes. We implicate phosphoinositide-dependent kinase-1 and PKCdelta autophosphorylation in the "priming" maturational PKCdelta-Thr(505) phosphorylation that accompanies de novo enzyme synthesis. In contrast, we show that PKCdelta-Thr(505) phosphorylation dynamically increases in cardiomyocytes treated with phorbol 12-myristate 13-acetate or the alpha(1)-adrenergic receptor agonist norepinephrine via a mechanism that requires novel PKC isoform activity and not phosphoinositide-dependent kinase-1. We used a PKCepsilon overexpression strategy as an initial approach to discriminate two possible novel PKC mechanisms, namely PKCdelta-Thr(505) autophosphorylation and PKCdelta-Thr(505) phosphorylation in trans by PKCepsilon. Our studies show that adenovirus-mediated PKCepsilon overexpression leads to an increase in PKCdelta-Thr(505) phosphorylation. However, this cannot be attributed to an effect of PKCepsilon to function as a direct PKCdelta-Thr(505) kinase, since the PKCepsilon-dependent increase in PKCdelta-Thr(505) phosphorylation is accompanied by (and dependent upon) increased PKCdelta phosphorylation at Tyr(311) and Tyr(332). Further studies implicate Src in this mechanism, showing that 1) PKCepsilon overexpression increases PKCdelta-Thr(505) phosphorylation in cardiomyocytes and Src(+) cells but not in SYF cells (that lack Src, Yes, and Fyn and exhibit a defect in PKCdelta-Tyr(311)/Tyr(332) phosphorylation), and 2) in vitro PKCdelta-Thr(505) autophosphorylation is augmented in assays performed with Src (which promotes PKCdelta-Tyr(311)/Tyr(332) phosphorylation). Collectively, these results identify a novel PKCdelta-Thr(505) autophosphorylation mechanism that is triggered by PKCepsilon overexpression and involves Src-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation.


Asunto(s)
Activación Enzimática , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/química , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Sitio Alostérico , Animales , Fibroblastos/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Miocardio/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Ratas , Ratas Wistar
8.
J Biol Chem ; 281(29): 20197-204, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16699171

RESUMEN

Thrombin activates protease-activated receptor-1 (PAR-1) and engages signaling pathways that influence the growth and survival of cardiomyocytes as well as extracellular matrix remodeling by cardiac fibroblasts. This study examines the role of Shc proteins in PAR-1-dependent signaling pathways that influence ventricular remodeling. We show that thrombin increases p46Shc/p52Shc phosphorylation at Tyr(239)/Tyr(240) and Tyr(317) (and p66Shc-Ser(36) phosphorylation) via a pertussis toxin-insensitive epidermal growth factor receptor (EGFR) transactivation pathway in cardiac fibroblasts; p66Shc-Ser(36) phosphorylation is via a MEK-dependent mechanism. In contrast, cardiac fibroblasts express beta(2)-adrenergic receptors that activate ERK through a pertussis toxin-sensitive EGFR transactivation pathway that does not involve Shc isoforms or lead to p66Shc-Ser(36) phosphorylation. In cardiomyocytes, thrombin triggers MEK-dependent p66Shc-Ser(36) phosphorylation, but this is not via EGFR transactivation (or associated with Shc-Tyr(239)/Tyr(240) and/or Tyr(317) phosphorylation). Importantly, p66Shc protein expression is detected in neonatal, but not adult, cardiomyocytes; p66Shc expression is induced (via a mechanism that requires protein kinase C and MEK activity) by Pasteurella multocida toxin, a Galpha(q) agonist that promotes cardiomyocyte hypertrophy. These results identify novel regulation of individual Shc isoforms in receptor-dependent pathways leading to cardiac hypertrophy and the transition to heart failure. The observations that p66Shc expression is induced by a Galpha(q) agonist and that PAR-1 activation leads to p66Shc-Ser(36) phosphorylation identifies p66Shc as a novel candidate hypertrophy-induced mediator of cardiomyocyte apoptosis and heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Corazón/fisiología , Animales , Animales Recién Nacidos , División Celular , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/fisiología , Fibroblastos/citología , Corazón/crecimiento & desarrollo , Células Musculares/citología , Miocardio/citología , Fosforilación , Fosfoserina/metabolismo , Isoformas de Proteínas/fisiología , Ratas , Ratas Wistar , Proteínas Adaptadoras de la Señalización Shc , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Trombina/farmacología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA